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Lecture Outline

• About me
• Course Introduction
• Assignment Overview
• Module 0 – CPS Architectures and Frameworks
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About Me 

• From Ithaca, Ny
• BS. In Physics and Computer Science from Houghton University
• Systems Engineer at Lockheed Martin 

• Situational awareness, sensor fusion, user interface

• Half an M. Eng. Degree in systems engineering
• PhD in ECE from Cornell University

• Computer Vision, Digital Agriculture, Robotics
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Yield Estimation in Vineyards
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Pruning Weight Estimation in Vineyards
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Crop Coefficient Estimation in Vineyards
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Robotics
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Course Introduction
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What are Cyber-Physical Systems?

• Physical Components 
• Devices, machine, sensors, actuators, …

• Cyber/Computation Components
• Software, algorithms, data processing

• Communication 
• Physical/computational components facilitating data transfer

• Feedback Loops and Automation
• Bidirectional data transfer that facilitates control and decision making
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What are Cyber-Physical Systems?

Actuators Sensors

Computational 
Systems

Physical Process 
(Plant)
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Definition

Integrated systems that combine computational algorithms with 
physical processes, enabling real-time monitoring, control, and 
interaction between the digital and physical worlds.

11



Cornell University System Engineering

Who Should Take this Class?

Systems Design
• Model based design

• Systems architecture 

• Vee life cycle model

• Interface definition

• Systems integration

• Optimization

• User centered design

Computer Science
• Programming

• Computer vision

• Machine learning

• Cloud Computing

Electrical/Computer
• Embedded systems

• Signal processing

• Sensors

• Communication

Mechanical
• Actuators

• Feedback control

• State estimation

Cyber-Physical Systems
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Who Should Take this Class?

13



Cornell University System Engineering

Who Should Take this Class?
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Survey – Student Backgrounds

• Majors
• Computer Science
• Mechanical Engineering
• Electrical & Computer Engineering
• Physics
• Math
• Industrial engineering & Operations Research

• Industry Experience
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Questions?
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Assignments
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Assignments

• No prelims!
• Labs –60%

• 12 total
• Weekly reports

• Case Studies – 30%
• 4 total
• Group submissions

• Participation & Quizzes – 10%
• 1 per week
• 5 minutes each
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Lab 1 – Programming Languages (1/27)

• Introduction to Embedded Systems
• Raspberry Pi Pico 
• Flashing the board, GPIO, DACs, Serial communication

• Programming Languages
• C++/C 
• Python
• MicroPython

• Learning Outcomes
• Learn how to select the appropriate programming paradigm
• Familiarize with programming 
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Lab 2 – Wired Communication Protocols (2/3)

• Bus Communication
• I2C - addressing
• Serial

• Compression
• Computational resources
• Baud rates Vs Transfer rates

• Learning Outcomes
• Quantify data transfer rates
• Understand tradeoffs between compression and transfer
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Lab 3 – Wireless Communication (2/10)

• Bluetooth Vs Wifi
• Range
• Transfer Speeds
• Protocols

• HTTPS vs MQTT
• Transfer speeds

• Learning Outcomes
• Compare wireless communication protocols
• Understand ISO networking model layers
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Lab 4 – Wireless Communication (Continued)

• Bluetooth Vs Wifi
• Range
• Transfer Speeds
• Protocols

• HTTPS vs MQTT
• Transfer speeds

• Learning Outcomes
• Compare wireless communication protocols
• Understand ISO networking model layers
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Lab 5 – Actuators (2/24)

• Motors, servos, ADC 
• PWM
• Read/Write GPIOs

• Encoders
• Polling
• Hardware interrupts

• Learning Outcomes
• Understand DC motors and encoders
• Understand difference between polling and hardware interrupts
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Lab 6 – Feedback Control (3/3) 

• PID Controllers 
• Wheel speed
• Angular position
• Wall following

• Servos
• Learning Outcomes

• Implement and tune PID controllers
• Implement nested PID controllers
• Test Servos 
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Lab 7 – Sensors & Filtering (3/10) 

• Ultrasonic Range Finder Vs ToF Sensor
• Characterize accuracy, noise, sample rates

• Gyroscope
• Bias reduction 

• Accelerometer
• Low-pass filter

• Learning Outcomes
• Implement and characterize sensor integration
• Compare sensor modalities
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Lab 8 – Sensor Fusion (Kalman Filter) (3/17) 

• Compute roll, pitch, and yaw 
• Characterize sensor noise
• Complimentary filter 
• Kalman Filter
• Data visualization

• Learning Outcomes
• Compare trade-offs between alpha value and lag
• Compare low-pass filter, complementary filter, and Kalman filter
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Lab 9 – Sensor Fusion (Continued) (3/24) 

• Kalman filter sensor fusion for position
• Characterize sensor noise
• IMU data
• Encoder data
• Visualize data

• Learning Outcomes
• Characterized performance of state 

estimation algorithms
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Lab 10 – Cameras and Computer Vision (4/7) 

• Configure Raspberry Pi Zero
• RTSP
• HTTPS

• Machine learning
• Object Detection and Tracking
• YOLO

• Learning Outcomes
• Basics of computer vision and perception
• Understand video compression/codecs
• Real time streaming protocols
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Lab 11 – Cloud Computing (4/14) 

• Implement Google Vision API
• Facial Expression Detection
• Image Labeling
• Object Detection
• Text Detection
• Logo Detection
• Landmark detection

• Learning Outcomes
• Use Google Vision API for high level tasks
• Design computer vision systems
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Lab 12 – Cyber-physical System (4/21) 

• Put it all together
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Architectures & Frameworks
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CPS Architectures & Frameworks

• 3C Architecture
• 5C Architecture
• IoT Architecture
• NIST Architecture
• Edge/Fog/Cloud Computing Framework
• Digital Twin Framework
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3C Architecture

• Computation 
• Data processing and decision making

• Communication
• Transmission of data between entities 

• Control
• Actions taken by the system to 

manipulate the physical environment 
Ateş, Emre, Erkan Bostancı, and Mehmet Güzel. "Security evaluation of 

industry 4.0: understanding industry 4.0 on the basis of crime, big data, 

internet of thing (IoT) and cyber physical systems." Güvenlik Bilimleri 
Dergisi International Security Congress Special Issue (2020): 29-50.
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3C Arc – Example: Modern Car

• Computational 
• ECU 
• Advanced Driver-Assistance System
• Infotainment System

• Communication
• Intra-Vehicle Networks (CAN bus)
• Vehicle-to-Vehicle Networks (V2V)
• Telematics Systems

• Control
• Actuators (steering, breaking, throttle, suspension)
• Stability Control Systems
• Climate Control Systems
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3C Arc – Example: Modern Car
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When to use the 3C Architecture

• Advantages
• Simple – easy to use

• Disadvantages
• Simple 
• Doesn’t capture functionality of component

• Use: when simplicity suffices
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5C Architecture
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5C Architecture

• Foundational layer comprised of 
sensors and actuatorsConnection 

Configuration
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5C Architecture

• Foundational layer comprised of 
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• Processes and converts raw dataConversion
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5C Architecture

• Foundational layer comprised of 
sensors and actuatorsConnection 

• Processes and converts raw dataConversion

• Digital representation of physical 
systemCyber

• Interprets dataCognition

• Decisions regarding manipulating 
the environmentConfiguration
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5C Arch – Example: Smart Wearable

Connection 

Conversion

Cyber

Cognition

Configuration
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5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to 
smartphonesConnection 

Conversion

Cyber

Cognition

Configuration
46



Cornell University System Engineering

5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to 
smartphonesConnection 

• Data is preprocessed on the device or phoneConversion

Cyber

Cognition

Configuration
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5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to 
smartphonesConnection 

• Data is preprocessed on the device or phoneConversion

• Cloud services create a digital profile of the user's healthCyber
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5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to 
smartphonesConnection 

• Data is preprocessed on the device or phoneConversion

• Cloud services create a digital profile of the user's healthCyber

• Analytics provide health insights and activity recommendationsCognition

Configuration
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5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to 
smartphonesConnection 

• Data is preprocessed on the device or phoneConversion

• Cloud services create a digital profile of the user's healthCyber

• Analytics provide health insights and activity recommendationsCognition
• Devices adjust settings or prompt users to act (e.g., stand up, 

stretch).Configuration
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When to use the 5C Architecture

• Advantages
• Data-centric framework
• More nuanced than 3C

• Disadvantages
• Poor conceptualization of communication and physical systems
• Assumes digital twin model

• Use: for data-intensive operations and intelligent decision making
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Internet of Things Architecture

• Defines business logic, policies, and 
goals

Business 
Layer

• Provides insights and control for 
end user

Application 
Layer

• Aggregates, stores, and 
processes data

Processing 
(Support or 

Middleware) Layer

• Facilitates 
communication 

Transport (Network) 
Layer

• Where interaction 
with the physical 
world occurs

Device (Perception) Layer 

Security 
Layer

Provides 
authentication, 
authorization, 
encryption, and 
intrusion 
prevention 
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IoT Arch – Example: Smart Traffic City

• Device (Perception) Layer 
• Cameras, inductive loop detectors, traffic lights, variable speed limits, express lanes

• Transport (Network) Layer
• Wired connections and wireless networks

• Processing (Support or Middleware) Layer
• Data processing, databases (historical traffic patterns), edge computing devices (CV)

• Application Layer
• Dashboards for monitoring, mobile apps for traffic updates

• Business Layer
• Policy (traffic management), revenue (tolls, funding budgets)

• Security Layer
• Encryption, authentication and authorization, intrusion detection systems
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When to use the IoT Architecture

• Advantages
• Strong functional categorization
• Incorporates business models

• Disadvantages
• Business model might not be defined

• Use: for consumer products
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NIST Architecture

• Domains – Specific application or environment
• Facets – Stages of engineering process

• Conceptualization – define requirements and high-level goals
• Realization – design, production, implementation
• Assurance – verification and validation

• Aspects – cross-cutting concerns for the entire system
• Functional, business, human, trustworthiness, timing, data, boundaries, 

composition, and lifecycle
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NIST Architecture
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When to use the IoT Architecture

• Advantages
• Wholistic modeling approach
• Adds context to 

• Disadvantages
• Loose sight of specific functional engineering components

• Use: projects with largescale public stakeholdership
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Edge, Fog, Cloud Computing Framework

• Edge Computing – Distributed computing paradigm that brings 
limited computation and data storage closer to source of data
• Example – embedded processing performing signal process

• Fog Computing – non-centralized, semi-distributed computing
• Example – Cellular base stations have computational units for signal 

processing, or ISP distributing video streaming services

• Cloud Computing – Centralized computing paradigm that uses 
server farms for scalable computational and storage services
• Examples - Azure, Google cloud, AWS
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Edge, Fog, Cloud Computing Framework

• Proximity to Data Source
• Edge: Closest 
• Fog: Between (network gateways or routers)
• Cloud: Furthest (remote data centers)

• Latency
• Edge: Lowest latency 
• Fog: Moderate latency 
• Cloud: Higher latency 
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Edge, Fog, Cloud Computing Framework

• Data Processing
• Edge: Processes data locally on the devices or nearby servers.
• Fog: Processes data partially, filtering or aggregating before sending it to 

the cloud.
• Cloud: Centralized processing in large-scale data centers.

• Data Volume
• Edge: Handles smaller volumes of data (localized).
• Fog: Handles intermediate volumes of data.
• Cloud: Designed to handle large volumes of data for in-depth analysis 

and storage.
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Edge, Fog, Cloud Computing Framework
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Digital Twin Framework

• Definition – Model of a physical system 
• Continuously updated with real-time data 
• Mirrors, simulates, and analyzes the system
• Predict issues and optimize performance

• Examples
• Aircraft maintenance schedules 
• Amazon warehouse stock
• Wind farm modeling
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Referential Transparency & 
System Diagrams
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Abstraction in CPS

• Why use abstraction?
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Abstraction in CPS

• Why use abstraction?
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Abstraction in CPS

• Why use abstraction?
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Key Principles of Abstraction

• Precisely define interfaces
• Communication protocols, data structures, endianness, units, etc. … 

•  Precisely define functionality
• Performance, mathematical function, environmental manipulation

Precise 
Interfaces

Precise 
Functionality

Referential 
Transparency+ =
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Referential Transparency

• Modeling and development of a five DoF vision based remote 
operated robotic arm with transmission control protocol
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Referential Transparency

• Improved reasoning and complexity management

• Enhanced testability

• Simplified debugging

• Modularity and useability
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