
Cornell University System Engineering

Cyber-Physical Systems
Dr. Jonathan Jaramillo

1

Cornell University System Engineering

Lecture Outline

• About me
• Course Introduction
• Assignment Overview
• Module 0 – CPS Architectures and Frameworks

2

Cornell University System Engineering

About Me

• From Ithaca, Ny
• BS. In Physics and Computer Science from Houghton University
• Systems Engineer at Lockheed Martin

• Situational awareness, sensor fusion, user interface

• Half an M. Eng. Degree in systems engineering
• PhD in ECE from Cornell University

• Computer Vision, Digital Agriculture, Robotics

3

Cornell University System Engineering

Yield Estimation in Vineyards

4

Cornell University System Engineering

Pruning Weight Estimation in Vineyards

5

Cornell University System Engineering

Crop Coefficient Estimation in Vineyards

6

Cornell University System Engineering

Robotics

7

Cornell University System Engineering

Course Introduction

8

Cornell University System Engineering

What are Cyber-Physical Systems?

• Physical Components
• Devices, machine, sensors, actuators, …

• Cyber/Computation Components
• Software, algorithms, data processing

• Communication
• Physical/computational components facilitating data transfer

• Feedback Loops and Automation
• Bidirectional data transfer that facilitates control and decision making

9

Cornell University System Engineering

What are Cyber-Physical Systems?

Actuators Sensors

Computational
Systems

Physical Process
(Plant)

10

Cornell University System Engineering

Definition

Integrated systems that combine computational algorithms with
physical processes, enabling real-time monitoring, control, and
interaction between the digital and physical worlds.

11

Cornell University System Engineering

Who Should Take this Class?

Systems Design
• Model based design

• Systems architecture

• Vee life cycle model

• Interface definition

• Systems integration

• Optimization

• User centered design

Computer Science
• Programming

• Computer vision

• Machine learning

• Cloud Computing

Electrical/Computer
• Embedded systems

• Signal processing

• Sensors

• Communication

Mechanical
• Actuators

• Feedback control

• State estimation

Cyber-Physical Systems

12

Cornell University System Engineering

Who Should Take this Class?

13

Cornell University System Engineering

Who Should Take this Class?

14

Cornell University System Engineering

Survey – Student Backgrounds

• Majors
• Computer Science
• Mechanical Engineering
• Electrical & Computer Engineering
• Physics
• Math
• Industrial engineering & Operations Research

• Industry Experience

15

Cornell University System Engineering

Questions?

16

Cornell University System Engineering

Assignments

17

Cornell University System Engineering

Assignments

• No prelims!
• Labs –60%

• 12 total
• Weekly reports

• Case Studies – 30%
• 4 total
• Group submissions

• Participation & Quizzes – 10%
• 1 per week
• 5 minutes each

18

Cornell University System Engineering

Lab 1 – Programming Languages (1/27)

• Introduction to Embedded Systems
• Raspberry Pi Pico
• Flashing the board, GPIO, DACs, Serial communication

• Programming Languages
• C++/C
• Python
• MicroPython

• Learning Outcomes
• Learn how to select the appropriate programming paradigm
• Familiarize with programming

19

Cornell University System Engineering

Lab 2 – Wired Communication Protocols (2/3)

• Bus Communication
• I2C - addressing
• Serial

• Compression
• Computational resources
• Baud rates Vs Transfer rates

• Learning Outcomes
• Quantify data transfer rates
• Understand tradeoffs between compression and transfer

20

Cornell University System Engineering

Lab 3 – Wireless Communication (2/10)

• Bluetooth Vs Wifi
• Range
• Transfer Speeds
• Protocols

• HTTPS vs MQTT
• Transfer speeds

• Learning Outcomes
• Compare wireless communication protocols
• Understand ISO networking model layers

21

Cornell University System Engineering

Lab 4 – Wireless Communication (Continued)

• Bluetooth Vs Wifi
• Range
• Transfer Speeds
• Protocols

• HTTPS vs MQTT
• Transfer speeds

• Learning Outcomes
• Compare wireless communication protocols
• Understand ISO networking model layers

22

Cornell University System Engineering

Lab 5 – Actuators (2/24)

• Motors, servos, ADC
• PWM
• Read/Write GPIOs

• Encoders
• Polling
• Hardware interrupts

• Learning Outcomes
• Understand DC motors and encoders
• Understand difference between polling and hardware interrupts

23

Cornell University System Engineering

Lab 6 – Feedback Control (3/3)

• PID Controllers
• Wheel speed
• Angular position
• Wall following

• Servos
• Learning Outcomes

• Implement and tune PID controllers
• Implement nested PID controllers
• Test Servos

24

Cornell University System Engineering

Lab 7 – Sensors & Filtering (3/10)

• Ultrasonic Range Finder Vs ToF Sensor
• Characterize accuracy, noise, sample rates

• Gyroscope
• Bias reduction

• Accelerometer
• Low-pass filter

• Learning Outcomes
• Implement and characterize sensor integration
• Compare sensor modalities

25

Cornell University System Engineering

Lab 8 – Sensor Fusion (Kalman Filter) (3/17)

• Compute roll, pitch, and yaw
• Characterize sensor noise
• Complimentary filter
• Kalman Filter
• Data visualization

• Learning Outcomes
• Compare trade-offs between alpha value and lag
• Compare low-pass filter, complementary filter, and Kalman filter

26

Cornell University System Engineering

Lab 9 – Sensor Fusion (Continued) (3/24)

• Kalman filter sensor fusion for position
• Characterize sensor noise
• IMU data
• Encoder data
• Visualize data

• Learning Outcomes
• Characterized performance of state

estimation algorithms

27

Cornell University System Engineering

Lab 10 – Cameras and Computer Vision (4/7)

• Configure Raspberry Pi Zero
• RTSP
• HTTPS

• Machine learning
• Object Detection and Tracking
• YOLO

• Learning Outcomes
• Basics of computer vision and perception
• Understand video compression/codecs
• Real time streaming protocols

28

Cornell University System Engineering

Lab 11 – Cloud Computing (4/14)

• Implement Google Vision API
• Facial Expression Detection
• Image Labeling
• Object Detection
• Text Detection
• Logo Detection
• Landmark detection

• Learning Outcomes
• Use Google Vision API for high level tasks
• Design computer vision systems

29

Cornell University System Engineering

Lab 12 – Cyber-physical System (4/21)

• Put it all together

30

Cornell University System Engineering

Architectures & Frameworks

31

Cornell University System Engineering

CPS Architectures & Frameworks

• 3C Architecture
• 5C Architecture
• IoT Architecture
• NIST Architecture
• Edge/Fog/Cloud Computing Framework
• Digital Twin Framework

32

Cornell University System Engineering

3C Architecture

• Computation
• Data processing and decision making

• Communication
• Transmission of data between entities

• Control
• Actions taken by the system to

manipulate the physical environment
Ateş, Emre, Erkan Bostancı, and Mehmet Güzel. "Security evaluation of

industry 4.0: understanding industry 4.0 on the basis of crime, big data,

internet of thing (IoT) and cyber physical systems." Güvenlik Bilimleri
Dergisi International Security Congress Special Issue (2020): 29-50.

33

Cornell University System Engineering

3C Arc – Example: Modern Car

• Computational
• ECU
• Advanced Driver-Assistance System
• Infotainment System

• Communication
• Intra-Vehicle Networks (CAN bus)
• Vehicle-to-Vehicle Networks (V2V)
• Telematics Systems

• Control
• Actuators (steering, breaking, throttle, suspension)
• Stability Control Systems
• Climate Control Systems

34

Cornell University System Engineering

3C Arc – Example: Modern Car

• Computational
• ECU
• Advanced Driver-Assistance System
• Infotainment System

• Communication
• Intra-Vehicle Networks (CAN bus)
• Vehicle-to-Vehicle Networks (V2V)
• Telematics Systems

• Control
• Actuators (steering, breaking, throttle, suspension)
• Stability Control Systems
• Climate Control Systems

35

Cornell University System Engineering

3C Arc – Example: Modern Car

• Computational
• ECU
• Advanced Driver-Assistance System
• Infotainment System

• Communication
• Intra-Vehicle Networks (CAN bus)
• Vehicle-to-Vehicle Networks (V2V)
• Telematics Systems

• Control
• Actuators (steering, breaking, throttle, suspension)
• Stability Control Systems
• Climate Control Systems

36

Cornell University System Engineering

3C Arc – Example: Modern Car

• Computational
• ECU
• Advanced Driver-Assistance System
• Infotainment System

• Communication
• Intra-Vehicle Networks (CAN bus)
• Vehicle-to-Vehicle Networks (V2V)
• Telematics Systems

• Control
• Actuators (steering, breaking, throttle, suspension)
• Stability Control Systems
• Climate Control Systems

37

Cornell University System Engineering

When to use the 3C Architecture

• Advantages
• Simple – easy to use

• Disadvantages
• Simple
• Doesn’t capture functionality of component

• Use: when simplicity suffices

38

Cornell University System Engineering

5C Architecture

39

Cornell University System Engineering

5C Architecture

• Foundational layer comprised of
sensors and actuatorsConnection

Configuration

40

Cornell University System Engineering

5C Architecture

• Foundational layer comprised of
sensors and actuatorsConnection

• Processes and converts raw dataConversion

Configuration

41

Cornell University System Engineering

5C Architecture

• Foundational layer comprised of
sensors and actuatorsConnection

• Processes and converts raw dataConversion

• Digital representation of physical
systemCyber

Configuration

42

Cornell University System Engineering

5C Architecture

• Foundational layer comprised of
sensors and actuatorsConnection

• Processes and converts raw dataConversion

• Digital representation of physical
systemCyber

• Interprets dataCognition

Configuration

43

Cornell University System Engineering

5C Architecture

• Foundational layer comprised of
sensors and actuatorsConnection

• Processes and converts raw dataConversion

• Digital representation of physical
systemCyber

• Interprets dataCognition

• Decisions regarding manipulating
the environmentConfiguration

44

Cornell University System Engineering

5C Arch – Example: Smart Wearable

Connection

Conversion

Cyber

Cognition

Configuration
45

Cornell University System Engineering

5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to
smartphonesConnection

Conversion

Cyber

Cognition

Configuration
46

Cornell University System Engineering

5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to
smartphonesConnection

• Data is preprocessed on the device or phoneConversion

Cyber

Cognition

Configuration
47

Cornell University System Engineering

5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to
smartphonesConnection

• Data is preprocessed on the device or phoneConversion

• Cloud services create a digital profile of the user's healthCyber

Cognition

Configuration
48

Cornell University System Engineering

5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to
smartphonesConnection

• Data is preprocessed on the device or phoneConversion

• Cloud services create a digital profile of the user's healthCyber

• Analytics provide health insights and activity recommendationsCognition

Configuration
49

Cornell University System Engineering

5C Arch – Example: Smart Wearable

• Wearable devices collect health data and connect to
smartphonesConnection

• Data is preprocessed on the device or phoneConversion

• Cloud services create a digital profile of the user's healthCyber

• Analytics provide health insights and activity recommendationsCognition
• Devices adjust settings or prompt users to act (e.g., stand up,

stretch).Configuration
50

Cornell University System Engineering

When to use the 5C Architecture

• Advantages
• Data-centric framework
• More nuanced than 3C

• Disadvantages
• Poor conceptualization of communication and physical systems
• Assumes digital twin model

• Use: for data-intensive operations and intelligent decision making

51

Cornell University System Engineering

Internet of Things Architecture

• Defines business logic, policies, and
goals

Business
Layer

• Provides insights and control for
end user

Application
Layer

• Aggregates, stores, and
processes data

Processing
(Support or

Middleware) Layer

• Facilitates
communication

Transport (Network)
Layer

• Where interaction
with the physical
world occurs

Device (Perception) Layer

Security
Layer

Provides
authentication,
authorization,
encryption, and
intrusion
prevention

52

Cornell University System Engineering

IoT Arch – Example: Smart Traffic City

• Device (Perception) Layer
• Cameras, inductive loop detectors, traffic lights, variable speed limits, express lanes

• Transport (Network) Layer
• Wired connections and wireless networks

• Processing (Support or Middleware) Layer
• Data processing, databases (historical traffic patterns), edge computing devices (CV)

• Application Layer
• Dashboards for monitoring, mobile apps for traffic updates

• Business Layer
• Policy (traffic management), revenue (tolls, funding budgets)

• Security Layer
• Encryption, authentication and authorization, intrusion detection systems

53

Cornell University System Engineering

When to use the IoT Architecture

• Advantages
• Strong functional categorization
• Incorporates business models

• Disadvantages
• Business model might not be defined

• Use: for consumer products

54

Cornell University System Engineering

NIST Architecture

• Domains – Specific application or environment
• Facets – Stages of engineering process

• Conceptualization – define requirements and high-level goals
• Realization – design, production, implementation
• Assurance – verification and validation

• Aspects – cross-cutting concerns for the entire system
• Functional, business, human, trustworthiness, timing, data, boundaries,

composition, and lifecycle

55

Cornell University System Engineering

NIST Architecture

56

Cornell University System Engineering

When to use the IoT Architecture

• Advantages
• Wholistic modeling approach
• Adds context to

• Disadvantages
• Loose sight of specific functional engineering components

• Use: projects with largescale public stakeholdership

57

Cornell University System Engineering

Edge, Fog, Cloud Computing Framework

• Edge Computing – Distributed computing paradigm that brings
limited computation and data storage closer to source of data
• Example – embedded processing performing signal process

• Fog Computing – non-centralized, semi-distributed computing
• Example – Cellular base stations have computational units for signal

processing, or ISP distributing video streaming services

• Cloud Computing – Centralized computing paradigm that uses
server farms for scalable computational and storage services
• Examples - Azure, Google cloud, AWS

58

Cornell University System Engineering

Edge, Fog, Cloud Computing Framework

• Proximity to Data Source
• Edge: Closest
• Fog: Between (network gateways or routers)
• Cloud: Furthest (remote data centers)

• Latency
• Edge: Lowest latency
• Fog: Moderate latency
• Cloud: Higher latency

59

Cornell University System Engineering

Edge, Fog, Cloud Computing Framework

• Data Processing
• Edge: Processes data locally on the devices or nearby servers.
• Fog: Processes data partially, filtering or aggregating before sending it to

the cloud.
• Cloud: Centralized processing in large-scale data centers.

• Data Volume
• Edge: Handles smaller volumes of data (localized).
• Fog: Handles intermediate volumes of data.
• Cloud: Designed to handle large volumes of data for in-depth analysis

and storage.

60

Cornell University System Engineering

Edge, Fog, Cloud Computing Framework
La

te
nc

y

Distance

Fog

Cloud

Edge

D
at

a
Vo

lu
m

e
Distance

Fog

Cloud

Edge

61

Cornell University System Engineering

Digital Twin Framework

• Definition – Model of a physical system
• Continuously updated with real-time data
• Mirrors, simulates, and analyzes the system
• Predict issues and optimize performance

• Examples
• Aircraft maintenance schedules
• Amazon warehouse stock
• Wind farm modeling

62

Cornell University System Engineering

Referential Transparency &
System Diagrams

63

Cornell University System Engineering64

Cornell University System Engineering

Abstraction in CPS

• Why use abstraction?

65

Cornell University System Engineering

Abstraction in CPS

• Why use abstraction?

66

Cornell University System Engineering

Abstraction in CPS

• Why use abstraction?

67

Cornell University System Engineering

Key Principles of Abstraction

• Precisely define interfaces
• Communication protocols, data structures, endianness, units, etc. …

• Precisely define functionality
• Performance, mathematical function, environmental manipulation

Precise
Interfaces

Precise
Functionality

Referential
Transparency+ =

68

Cornell University System Engineering

Referential Transparency

• Modeling and development of a five DoF vision based remote
operated robotic arm with transmission control protocol

69

Cornell University System Engineering

Referential Transparency

• Improved reasoning and complexity management

• Enhanced testability

• Simplified debugging

• Modularity and useability

70

	Slide 1: Cyber-Physical Systems
	Slide 2: Lecture Outline
	Slide 3: About Me
	Slide 4: Yield Estimation in Vineyards
	Slide 5: Pruning Weight Estimation in Vineyards
	Slide 6: Crop Coefficient Estimation in Vineyards
	Slide 7: Robotics
	Slide 8: Course Introduction
	Slide 9: What are Cyber-Physical Systems?
	Slide 10: What are Cyber-Physical Systems?
	Slide 11: Definition
	Slide 12: Who Should Take this Class?
	Slide 13: Who Should Take this Class?
	Slide 14: Who Should Take this Class?
	Slide 15: Survey – Student Backgrounds
	Slide 16: Questions?
	Slide 17: Assignments
	Slide 18: Assignments
	Slide 19: Lab 1 – Programming Languages (1/27)
	Slide 20: Lab 2 – Wired Communication Protocols (2/3)
	Slide 21: Lab 3 – Wireless Communication (2/10)
	Slide 22: Lab 4 – Wireless Communication (Continued)
	Slide 23: Lab 5 – Actuators (2/24)
	Slide 24: Lab 6 – Feedback Control (3/3)
	Slide 25: Lab 7 – Sensors & Filtering (3/10)
	Slide 26: Lab 8 – Sensor Fusion (Kalman Filter) (3/17)
	Slide 27: Lab 9 – Sensor Fusion (Continued) (3/24)
	Slide 28: Lab 10 – Cameras and Computer Vision (4/7)
	Slide 29: Lab 11 – Cloud Computing (4/14)
	Slide 30: Lab 12 – Cyber-physical System (4/21)
	Slide 31: Architectures & Frameworks
	Slide 32: CPS Architectures & Frameworks
	Slide 33: 3C Architecture
	Slide 34: 3C Arc – Example: Modern Car
	Slide 35: 3C Arc – Example: Modern Car
	Slide 36: 3C Arc – Example: Modern Car
	Slide 37: 3C Arc – Example: Modern Car
	Slide 38: When to use the 3C Architecture
	Slide 39: 5C Architecture
	Slide 40: 5C Architecture
	Slide 41: 5C Architecture
	Slide 42: 5C Architecture
	Slide 43: 5C Architecture
	Slide 44: 5C Architecture
	Slide 45: 5C Arch – Example: Smart Wearable
	Slide 46: 5C Arch – Example: Smart Wearable
	Slide 47: 5C Arch – Example: Smart Wearable
	Slide 48: 5C Arch – Example: Smart Wearable
	Slide 49: 5C Arch – Example: Smart Wearable
	Slide 50: 5C Arch – Example: Smart Wearable
	Slide 51: When to use the 5C Architecture
	Slide 52: Internet of Things Architecture
	Slide 53: IoT Arch – Example: Smart Traffic City
	Slide 54: When to use the IoT Architecture
	Slide 55: NIST Architecture
	Slide 56: NIST Architecture
	Slide 57: When to use the IoT Architecture
	Slide 58: Edge, Fog, Cloud Computing Framework
	Slide 59: Edge, Fog, Cloud Computing Framework
	Slide 60: Edge, Fog, Cloud Computing Framework
	Slide 61: Edge, Fog, Cloud Computing Framework
	Slide 62: Digital Twin Framework
	Slide 63: Referential Transparency & System Diagrams
	Slide 64
	Slide 65: Abstraction in CPS
	Slide 66: Abstraction in CPS
	Slide 67: Abstraction in CPS
	Slide 68: Key Principles of Abstraction
	Slide 69: Referential Transparency
	Slide 70: Referential Transparency

