
Cornell University System Engineering

Cyber-Physical Systems
Dr. Jonathan Jaramillo

1

Cornell University System Engineering

Computer Architecture

2

Cornell University System Engineering3

Cornell University System Engineering4

• Compiler: Source code is compiled to
assembly language.

• Assembler: Assembly is converted to
machine code.

• Linker: Machine code is combined with
libraries to create an executable file.

How Does A CPU Work?

Cornell University System Engineering5

How Does A CPU Work?
Software Assembly Machine Code

Irreversible Reversible

Cornell University System Engineering6

• Source Code:
• Human-readable high-level language

• Assembly:
• Low-level language with one-to-one relationship to instruction set

• Instruction Set Architecture:
• Set of building blocks that define the capabilities of the processor

• Microarchitecture:
• Physical circuit implementation of ISA

• Computer Architecture:
• Overall design of the computer chip, including ISA, I/O, Memory, Bus

How Does A CPU Work?

Cornell University System Engineering7

Control
Unit

Arithmetic
Logic Unit

Registers L1 Cache

Memory
Controller

Clock

Cache

CPU Core

COMs

RAM

Graphics

Storage
L2 L3

Cornell University System Engineering8

Control
Unit

Arithmetic
Logic Unit

Registers L1 Cache

Memory
Controller

Clock

Cache

CPU Core

COMs

RAM

Graphics

Storage
L2 L3

Cornell University System Engineering9

Control
Unit

Arithmetic
Logic Unit

Registers L1 Cache

Memory
Controller

Clock

Cache

CPU Core

COMs

L2 L3

Flash
Memory Static RAM

MCU

DAC

ADC

Timer,
Counter

Interrupts

Power
Supply/
Mngmnt

EEPROM

Cornell University System Engineering10

Control
Unit

Arithmetic
Logic Unit

Registers L1 Cache

Memory
Controller

Clock

Cache

CPU Core

COMs

L2 L3

Flash
Memory Static RAM

MCU

DAC

ADC

Timer,
Counter

Interrupts

Power
Supply/
Mngmnt

EEPROM

Cornell University System Engineering

Definitions

• RAM – Random access memory
• Volatile, fast, computer memory

• EEPROM – Electronic Erasable Programable Read-only Memory
• Non-volatile, bite-level erasable, slow and less durable
• Firmware, BIOS/UEFI settings, sensor and user settings

• Flash Memory
• Non-volatile, slower than RAM, higher endurance, more storage, block

erasure
• Used in SSDs, memory cards, firmware storage

11

Cornell University System Engineering

When to Use

• RAM – Random access memory
• General compute memory for when for fast larger volumes

• EEPROM – Electronic Erasable Programable Read-only Memory
• Very simple interface and control, lower power consumption, slow
• Small, frequent updates

• Flash Memory
• Faster, larger storage, cost effective
• Large, bulk storage

12

Cornell University System Engineering13

Instruction Sets

Cornell University System Engineering14

• Instruction Sets
• Arithmetic Operations
• Data Movement
• Control Flow
• Logic Operations

• Micro Architecture
• How ISA is implemented in specific

circuitry

• Computer Architecture
• Structure of the all components

Instruction Sets

Cornell University System Engineering15

• CISC architectures have a large set of instructions
• Specialized instructions
• Many clock cycles per instruction
• Instructions can directly manipulate memory

• Advantages
• Fewer instructions are needed – Easier to write

• Disadvantages
• Complex hardware, slower execution for simple operations

• Examples: x86 (Intel, AMD), System/360 (IBM)

Complex Instruction Set Computer

Cornell University System Engineering16

• RISC architectures have a few set of fixed length instructions
• Small and simple instruction set
• Each instruction takes one clock cycle
• Load/store registers independent of memory

• Advantages
• Simple, fast execution, with simpler hardware

• Disadvantages
• More instructions to accomplish a task

• Examples: ARM, RISC-V

Reduced Instruction Set Computer

Cornell University System Engineering17

Instruction Sets

Cornell University System Engineering18

A loop to manually copy memory

Instruction Sets Examples

Cornell University System Engineering19

• Compiled (C/C++, Rust):
• Converted to assembly and then assembled into machine code

• Interpreted (Python, JavaScript, PHP)
• Analyzed line by line, each line is used to call pre-defined machine code

• Just In Time (JIT) (Java, C#)
• Lines of code are analyzed one at a time, dynamically compiled and run

• Bytecode and Virtual Machines (Jaca, C#)
• Code is compiled to intermediary “bytecode” and executed on a VM

• Scripting Languages (Bash, PowerShell)

Source Code Languages

Cornell University System Engineering20

• Compiled: System programming, embedded systems
• High performance, efficient, slower development, platform specific

• Interpreted: Rapid prototyping, automation, scripting
• Slower performance, portable, easy to use, fast iterations

• Just In Time: Web applications, enterprise applications
• Dynamic optimization, portable, startup delays, high resource usage

• Bytecode and VMs: Cross-platform software, enterprise
• Portable, slower than compiled, faster than interpreted, VM dependent

• Scripting Languages: Automation, system administration

When to Use

Cornell University System Engineering21

• Complexity

Programming Languages

Cornell University System Engineering

Operating Systems

22

Cornell University System Engineering

Kernal Space (privileged mode)

• Kernel – Core of the OS with full hardware access
• Manages process scheduling, memory, file systems, system calls
• Enforces Security and isolation

• Drivers – Kernel modules that enable hardware communication
• Translate hardware-specific operations to standardized OS function

• Memory Management Unit – controls physical memory allocation
• Maps processes virtual address to physical address
• Isolates processes

23

Cornell University System Engineering

Kernal Space (privileged mode)

• System Calls – interface between user applications and the kernel
• File I/O, network access, memory allocation

• Interrupts and Exceptions
• Interrupts – events that trigger a response
• Exceptions – faults in software
• Incoming network packets, timer ticks, invalid memory access

24

Cornell University System Engineering

User Space (unprivileged mode)

• Applications – run with limited access to prevent accidental or
malicious harm
• Cannot directly access hardware, must use kernel

• Runtime libraries – provide high-level abstraction
• Typically statically or dynamically linked to application

25

Cornell University System Engineering26

Specialized software program that allows the (OS) or firmware
running on a CPU or MCU to interact with hardware devices
• Abstraction

• Presents a simplified, uniform interface

• Communication Management
• Command translation and data formatting

• Resource Management
• System resource allocation and interrupt handling

• Error Handling

Drivers – Bridging Software and Hardware

Cornell University System Engineering

Real Time Operating System (RTOS)

• Operating system designed to process data and execute tasks
within strict timing constraints.

• Ensures predictable, deterministic responses to events.
• Not all microprocessors can run RTOS.

27

Cornell University System Engineering

Real Time Operating System (RTOS)

• Non-deterministic code execution
• Interrupt latency
• Incompatible memory
• Branch prediction and speculative execution

28

Cornell University System Engineering

Programming
Microcontrollers

29

Cornell University System Engineering30

• Manufacturer’s IDE and Toolchain
• Compiler (usually GCC based or propriety)
• Debugger – hardware/software (Joint Test Action Group, Serial Wire Debug)
• Peripheral and Code Config Tools (clocks, timers, communications)

• Set up the Project
• Target microcontroller
• Compiler Options
• Startup code

Development Environment

Cornell University System Engineering

Boot Loaders

• Small program on dedicated memory designed to load and run the
main application.

• Key Functions
• Initialization – start up main application and hardware
• Boot Management – determines where to find and load firmware
• Firmware updates – uses USB, UART, SPI, etc. to upload new firmware
• Fail-safe – can revert to safe or backup firmware in case of corruption

31

Cornell University System Engineering

BOOTSEL, RESET, or BOOT0

1. Boot from main flash memory
• Default behavior
• Load firmware from flash

2. Boot into bootloader mode
• When BOOTSEL is pushed during power up
• Receives new firmware over communication interface
• Performs diagnostic and recovery procedures

32

Cornell University System Engineering33

Microprocessor
Software Assembly Machine Code

Irreversible Reversible

Cornell University System Engineering34

Microprocessor
Software Assembly

MicroPython
Frimware

Irreversible Reversible

Serial Interface

Python Files

Cornell University System Engineering35

Arduino

Cornell University System Engineering36

Arduino

Cornell University System Engineering37

Arduino

Cornell University System Engineering38

Thonny

	Slide 1: Cyber-Physical Systems
	Slide 2: Computer Architecture
	Slide 3
	Slide 4: How Does A CPU Work?
	Slide 5: How Does A CPU Work?
	Slide 6: How Does A CPU Work?
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Definitions
	Slide 12: When to Use
	Slide 13: Instruction Sets
	Slide 14: Instruction Sets
	Slide 15: Complex Instruction Set Computer
	Slide 16: Reduced Instruction Set Computer
	Slide 17: Instruction Sets
	Slide 18: Instruction Sets Examples
	Slide 19: Source Code Languages
	Slide 20: When to Use
	Slide 21: Programming Languages
	Slide 22: Operating Systems
	Slide 23: Kernal Space (privileged mode)
	Slide 24: Kernal Space (privileged mode)
	Slide 25: User Space (unprivileged mode)
	Slide 26: Drivers – Bridging Software and Hardware
	Slide 27: Real Time Operating System (RTOS)
	Slide 28: Real Time Operating System (RTOS)
	Slide 29: Programming Microcontrollers
	Slide 30: Development Environment
	Slide 31: Boot Loaders
	Slide 32: BOOTSEL, RESET, or BOOT0
	Slide 33: Microprocessor
	Slide 34: Microprocessor
	Slide 35: Arduino
	Slide 36: Arduino
	Slide 37: Arduino
	Slide 38: Thonny

