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• Compiler: Source code is compiled to 
assembly language.

• Assembler: Assembly is converted to 
machine code.

• Linker: Machine code is combined with 
libraries to create an executable file. 

How Does A CPU Work?
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How Does A CPU Work?
Software Assembly Machine Code

Irreversible Reversible



Cornell University System Engineering6

• Source Code: 
• Human-readable high-level language

• Assembly: 
• Low-level language with one-to-one relationship to instruction set

• Instruction Set Architecture: 
• Set of building blocks that define the capabilities of the processor  

• Microarchitecture:
• Physical circuit implementation of ISA

• Computer Architecture:
• Overall design of the computer chip, including ISA, I/O, Memory, Bus

How Does A CPU Work?
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Definitions

• RAM – Random access memory
• Volatile, fast, computer memory

• EEPROM – Electronic Erasable Programable Read-only Memory
• Non-volatile, bite-level erasable, slow and less durable
• Firmware, BIOS/UEFI settings, sensor and user settings

• Flash Memory
• Non-volatile, slower than RAM, higher endurance, more storage, block 

erasure
• Used in SSDs, memory cards, firmware storage
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When to Use

• RAM – Random access memory
• General compute memory for when for fast larger volumes

• EEPROM – Electronic Erasable Programable Read-only Memory
• Very simple interface and control, lower power consumption, slow
• Small, frequent updates

• Flash Memory
• Faster, larger storage, cost effective
• Large, bulk storage
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Instruction Sets
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• Instruction Sets
• Arithmetic Operations
• Data Movement
• Control Flow
• Logic Operations

• Micro Architecture
• How ISA is implemented in specific 

circuitry

• Computer Architecture
• Structure of the all components

Instruction Sets
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•  CISC architectures have a large set of instructions
• Specialized instructions
• Many clock cycles per instruction
• Instructions can directly manipulate memory

• Advantages
• Fewer instructions are needed – Easier to write

• Disadvantages
• Complex hardware, slower execution for simple operations

• Examples: x86 (Intel, AMD), System/360 (IBM)

Complex Instruction Set Computer
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•  RISC architectures have a few set of fixed length instructions
• Small and simple instruction set
• Each instruction takes one clock cycle
• Load/store registers independent of memory

• Advantages
• Simple, fast execution, with simpler hardware

• Disadvantages
• More instructions to accomplish a task

• Examples: ARM, RISC-V

Reduced Instruction Set Computer
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Instruction Sets
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A loop to manually copy memory

Instruction Sets Examples
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• Compiled (C/C++, Rust):
• Converted to assembly and then assembled into machine code

• Interpreted (Python, JavaScript, PHP)
• Analyzed line by line, each line is used to call pre-defined machine code

• Just In Time (JIT) (Java, C#)
• Lines of code are analyzed one at a time, dynamically compiled and run

• Bytecode and Virtual Machines (Jaca, C#)
• Code is compiled to intermediary “bytecode” and executed on a VM

• Scripting Languages (Bash, PowerShell)

Source Code Languages



Cornell University System Engineering20

• Compiled: System programming, embedded systems
• High performance, efficient, slower development, platform specific

• Interpreted: Rapid prototyping, automation, scripting
• Slower performance, portable, easy to use, fast iterations

• Just In Time: Web applications, enterprise applications
• Dynamic optimization, portable, startup delays, high resource usage

• Bytecode and VMs: Cross-platform software, enterprise 
• Portable, slower than compiled, faster than interpreted, VM dependent

• Scripting Languages: Automation, system administration

When to Use
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• Complexity 

Programming Languages
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Operating Systems
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Kernal Space (privileged mode)

• Kernel – Core of the OS with full hardware access 
• Manages process scheduling, memory, file systems, system calls
• Enforces Security and isolation

• Drivers – Kernel modules that enable hardware communication
• Translate hardware-specific operations to standardized OS function

• Memory Management Unit – controls physical memory allocation
• Maps processes virtual address to physical address
• Isolates processes 

23
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Kernal Space (privileged mode)

• System Calls – interface between user applications and the kernel
• File I/O, network access, memory allocation

• Interrupts and Exceptions 
• Interrupts – events that trigger a response
• Exceptions – faults in software
• Incoming network packets, timer ticks, invalid memory access
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User Space (unprivileged mode)

• Applications – run with limited access to prevent accidental or 
malicious harm
• Cannot directly access hardware, must use kernel

• Runtime libraries – provide high-level abstraction
• Typically statically or dynamically linked to application

25
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Specialized software program that allows the (OS) or firmware 
running on a CPU or MCU to interact with hardware devices
• Abstraction

• Presents a simplified, uniform interface

• Communication Management
• Command translation and data formatting

• Resource Management
• System resource allocation and interrupt handling

• Error Handling

Drivers – Bridging Software and Hardware
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Real Time Operating System (RTOS)

• Operating system designed to process data and execute tasks 
within strict timing constraints.

• Ensures predictable, deterministic responses to events.
• Not all microprocessors can run RTOS.
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Real Time Operating System (RTOS)

• Non-deterministic code execution
• Interrupt latency
• Incompatible memory
• Branch prediction and speculative execution
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Programming 
Microcontrollers
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• Manufacturer’s IDE and Toolchain
• Compiler (usually GCC based or propriety)
• Debugger – hardware/software (Joint Test Action Group, Serial Wire Debug)
• Peripheral and Code Config Tools (clocks, timers, communications)

• Set up the Project
• Target microcontroller
• Compiler Options
• Startup code

Development Environment
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Boot Loaders

• Small program on dedicated memory designed to load and run the 
main application.

• Key Functions
• Initialization – start up main application and hardware
• Boot Management – determines where to find and load firmware
• Firmware updates – uses USB, UART, SPI, etc. to upload new firmware
• Fail-safe – can revert to safe or backup firmware in case of corruption
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BOOTSEL, RESET, or BOOT0

1. Boot from main flash memory
• Default behavior
• Load firmware from flash

2. Boot into bootloader mode
• When BOOTSEL is pushed during power up
• Receives new firmware over communication interface
• Performs diagnostic and recovery procedures

32
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Microprocessor 
Software Assembly Machine Code

Irreversible Reversible
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Microprocessor 
Software Assembly

MicroPython 
Frimware

Irreversible Reversible

Serial Interface

Python Files
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Arduino
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Arduino
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Arduino
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Thonny
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