Cyber-Physical Systems

Dr. Jonathan Jaramillo

Computer Architecture

3

G el

o LW s P
gggangiyy’
s ™

/

w
LEEL

o Y

/

iy

; T ?1

‘2N

Cornel”

How Does A CPU Work?

* Compiler: Source code is compiled to
assembly language.

* Assembler: Assembly is converted to
machine code.

e Linker: Machine code is combined with
libraries to create an executable file.

How Does A CPU Work?

Software

Assembly

How Does A CPU Work?

* Source Code:
* Human-readable high-level language

* Assembly:

* Low-level language with one-to-one relationship to instruction set

* Instruction Set Architecture:
* Set of building blocks that define the capabilities of the processor

* Microarchitecture:
* Physical circuit implementation of ISA

* Computer Architecture:
* Overall design of the computer chip, including ISA, I/0, Memory, Bus

RAM

Graphics

Storage

r
CPU Core
@«)
Memory Control Arithmetic
Controller Unit Logic Unit
\. y,
4 N\ [R
COMs Clock Registers L1 Cache
G J J _
r
Cache
L2 | ‘ L3

RAM

Graphics

Storage

r
CPU Core
@«)
Memory Control Arithmetic
Controller Unit Logic Unit
\. y,
4 N\ [R
COMs Clock Registers L1 Cache
G J J _
r
Cache
L2 | ‘ L3

MCU

N [N (4 A
Flash Power
as _
EEFIRION Memor Static RAM Supply/
Y Mngmnt
J _ \ N)
) 4 é)
CPU Core
DAC () Timer,
Control Arithmeti
Cl\g(ra\?:c?lrlir Er:“;o ngién L(Jenlifc: Counter
\ y,
y L)
4 A
A COMs Gl Registers L1 Cache r ~
N J U
ADC [Cache Interrupts
L2 | | L3
y - L)

MCU

N [N (4 A
Flash Power
as _
EEFIRION Memor Static RAM Supply/
Y Mngmnt
J _ \ N)
) 4 é)
CPU Core
DAC () Timer,
Control Arithmeti
Cl\g(ra\?:c?lrlir Er:“;o ngién L(Jenlifc: Counter
\ y,
y L)
4 A
A COMs Gl Registers L1 Cache r ~
N J U
ADC [Cache Interrupts
L2 | | L3
y - L)

Definitions

* RAM - Random access memory
* Volatile, fast, computer memory

* EEPROM - Electronic Erasable Programable Read-only Memory
* Non-volatile, bite-level erasable, slow and less durable
* Firmware, BIOS/UEFI settings, sensor and user settings

* Flash Memory
* Non-volatile, slower than RAM, higher endurance, more storage, block
erasure
* Used in SSDs, memory cards, firmware storage

When to Use

* RAM - Random access memory
* General compute memory for when for fast larger volumes

* EEPROM - Electronic Erasable Programable Read-only Memory
* Very simple interface and control, lower power consumption, slow
 Small, frequent updates

* Flash Memory

* Faster, larger storage, cost effective
* Large, bulk storage

Instruction Sets

0

(o) e R
SUBTITLE MENU RATIO INPUT
[17: TR -)

1 2 3
4 5 6
78§ 83 | E9

usT 0
QUICKACCESS

FAV
+
GUIDE | |

MUTE®

am « o »
E @ e alamy....

TEXT v
ETEXT A -

P oK e AD N

voL PR MENU
& v - wm v

: 3 vouube J NETFLIX
&3 = « mgea e

APl TOPT REC n

3 CHN NN rime:
-« » n > TS
DO
o -+
SKY-9806
RM-L57+V3

L*G/8* AMSUNGIT*CLI
S*ONY/P*hilca/P*anasonko

13 Cornell University System Engineering

14

Instruction Sets

* Instruction Sets
* Arithmetic Operations
* Data Movement
* Control Flow
* Logic Operations

e Micro Architecture

* How ISA is implemented in specific
circuitry

* Computer Architecture
e Structure of the all components

Cornell University System Engineering

MM

3 ’1 Y m ’.___:‘,_,

ETIEETE =

ﬂsﬁﬂﬁ éﬂﬂ’iﬁ |

Complex Instruction Set Computer

* CISC architectures have a large set of instructions
e Specialized instructions
* Many clock cycles per instruction
* Instructions can directly manipulate memory

* Advantages
e Fewer instructions are needed — Easier to write

* Disadvantages
 Complex hardware, slower execution for simple operations

 Examples: x86 (Intel, AMD), System/360 (IBM)

Reduced Instruction Set Computer

* RISC architectures have a few set of fixed length instructions

 Small and simple instruction set
* Each instruction takes one clock cycle
* Load/store registers independent of memory

* Advantages
* Simple, fast execution, with simpler hardware

* Disadvantages
* More instructions to accomplish a task

* Examples: ARM, RISC-V

Instruction Sets

(@ ™ ‘?;{,a

SUBTITLE MENU RATIO INPUT

o A)

LIVETV

AP TOPT REC n
MAGIC LINK

- > n »

OO
o -+

SKY-9806
RM-L57+ V3

it /_,y - G z — | — e
> iz < i = S |l e 1
SLassAMsUNGITCLY 2 e #a
ONY/P*hilca/P*anssonko Sy | e NS 7 | roirega [kl e

17 Cornell University System Engineering

Instruction Sets Examples

A loop to manually copy memory

N X] MOV RO, source ; Load source address
MOV R1l, dest ; Load destination address
MOV R2, #100 ; Set loop counter (100 bytes)

MOV RCX, 100 ; Move 100 (number of elements) into RCX

MOV RSI, source ; Load source address into RSI Ll

. . . LDRB R3, [RO], #1 ; Load byte from source, increment source pointer
MOV RDI, dest ; Load destination address into RDI ! "

]) . STRB R3, [R1], #1 ; Store byte to destination, increment destination pointer
REP MOVSB ; Copy 100 bytes from source to destination SUBS R2, R2, #1 ; Decrement counter

BNE loop ; If counter not zero, repeat loop

18 Cornell University System Engineering

Source Code Languages

e Compiled (C/C++, Rust):

* Converted to assembly and then assembled into machine code

* Interpreted (Python, JavaScript, PHP)
* Analyzed line by line, each line is used to call pre-defined machine code

* Just In Time (JIT) (Java, C#)

* Lines of code are analyzed one at a time, dynamically compiled and run

* Bytecode and Virtual Machines (Jaca, C#)
* Codeis compiled to intermediary “bytecode” and executed on a VM

* Scripting Languages (Bash, PowerShell)

When to Use

* Compiled: System programming, embedded systems
* High performance, efficient, slower development, platform specific

* Interpreted: Rapid prototyping, automation, scripting
* Slower performance, portable, easy to use, fast iterations

* JustIn Time: Web applications, enterprise applications
* Dynamic optimization, portable, startup delays, high resource usage

* Bytecode and VMs: Cross-platform software, enterprise
* Portable, slower than compiled, faster than interpreted, VM dependent

* Scripting Languages: Automation, system administration

Programming Languages

* Complexity

#include <iostream>

int main() {
std::cout << "Hello, World!" << std::endl;

} return 0; print("H6110, World!")

21 Cornell University System Engineering

Operating Systems

Kernal Space (privileged mode)

 Kernel - Core of the OS with full hardware access
* Manages process scheduling, memory, file systems, system calls
* Enforces Security and isolation

* Drivers — Kernel modules that enable hardware communication
* Translate hardware-specific operations to standardized OS function

* Memory Management Unit — controls physical memory allocation
* Maps processes virtual address to physical address
* |[solates processes

Kernal Space (privileged mode)

* System Calls — interface between user applications and the kernel
* File I/0O, network access, memory allocation

* Interrupts and Exceptions
* Interrupts — events that trigger a response
* Exceptions —faults in software
* Incoming network packets, timer ticks, invalid memory access

User Space (unprivileged mode)

* Applications —run with limited access to prevent accidental or
malicious harm

* Cannot directly access hardware, must use kernel

* Runtime libraries — provide high-level abstraction
* Typically statically or dynamically linked to application

Drivers — Bridging Software and Hardware

Specialized software program that allows the (OS) or firmware
running on a CPU or MCU to interact with hardware devices

* Abstraction
* Presents a simplified, uniform interface

* Communication Management
* Command translation and data formatting

* Resource Management
* System resource allocation and interrupt handling

* Error Handling

Real Time Operating System (RTOS)

* Operating system designhed to process data and execute tasks
within strict timing constraints.

* Ensures predictable, deterministic responses to events.

* Not all microprocessors can run RTOS.

Real Time Operating System (RTOS)

e Non-deterministic code execution
* Interrupt latency

* Incompatible memory
* Branch prediction and speculative execution

Programming
Microcontrollers

Development Environment

 Manufacturer’s IDE and Toolchain
 Compiler (usually GCC based or propriety)
* Debugger — hardware/software (Joint Test Action Group, Serial Wire Debug)
* Peripheral and Code Config Tools (clocks, timers, communications)

* Set up the Project
* Target microcontroller
* Compiler Options
e Startup code

Boot Loaders

* Small program on dedicated memory designed to load and run the
main application.

* Key Functions
* |nitialization — start up main application and hardware
* Boot Management —determines where to find and load firmware
* Firmware updates —uses USB, UART, SPI, etc. to upload new firmware
* Fail-safe — can revert to safe or backup firmware in case of corruption

BOOTSEL, RESET, or BOOTO

1. Boot from main flash memory
* Default behavior
* Load firmware from flash

2. Bootinto bootloader mode
* When BOOTSEL is pushed during power up
* Receives new firmware over communication interface
* Performs diagnostic and recovery procedures

Microprocessor

Software

e Serial Interface
Microprocessor
MicroPython
Software Assembly Frimware
Irreversible - - Reversible I 0 I 0
00
O 6 Il ¢

m = 1010

Arduino

Arduino File Edit Sketch

BareMinimum

put your setup code here, to

+}

void loop(Q) {

put your main code here, to

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter
WIiFi101 / WIFININA Firmware Updater

Board: "Arduino Nano Every" Boards Manager...
Registers emulation: "ATMEGA328"
Port

Get Board Info

Arduino AVR Boards

Arduino Mbed OS Edge Boards

Arduino Mbed OS Nano Boards

Programmer Arduino Mbed OS Nicla Boards

Burn Bootloader Arduino Mbed OS Portenta Boards
Arduino megaAVR Boards

Arduino Uno WiFi Rev2

Arduino SAMD (32-bits ARM Cortex-M0+) Boards

Arduino Nano Every, ATMEGA328 on /dev/cu.usbmodem13401

Arduino

void setup() {
pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);

digitalWrite(LED_BUILTIN, LOW);
delay(1000);

}

36 Cornell University System Engineering

Arduino

o e e |
1 S v T . O §]

-1
1 1 o

-]

=]
™o

Autoscroll |:| Shaow timestamp

'—l

i [l

'—l

[
=S

'—l

=] &«

'—l

&
6
1la5
-
II

= =
—] =] =]
. [=

|—l

1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111140
1111101
1111110

Mewline

9500 baud

Thonny —

General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which kind of interpreter should Thenny use for running your code?

MicroPython (Raspberry Pi Pico)

Details

Connecting via USE cable:

Connec r device to the computer and select corresponding port below
(look for your device name, "USE Serial” or "UAR

If you can't find it, you may need to install proper USE driver first.

Connecting via WebREPL:

If your device supports WebREPL, first connect via serial, make sure WebREPL is enabled
(import webrepl_setup), connect your computer and device to same network and select
< WebREPL > below

Board CDC @ COM3

Interrupt working program on connect
Synchronize device's real time clock

Uze local time in real time clock

Restart interpreter before running a script

Install or update MicroPython

Cancel

	Slide 1: Cyber-Physical Systems
	Slide 2: Computer Architecture
	Slide 3
	Slide 4: How Does A CPU Work?
	Slide 5: How Does A CPU Work?
	Slide 6: How Does A CPU Work?
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Definitions
	Slide 12: When to Use
	Slide 13: Instruction Sets
	Slide 14: Instruction Sets
	Slide 15: Complex Instruction Set Computer
	Slide 16: Reduced Instruction Set Computer
	Slide 17: Instruction Sets
	Slide 18: Instruction Sets Examples
	Slide 19: Source Code Languages
	Slide 20: When to Use
	Slide 21: Programming Languages
	Slide 22: Operating Systems
	Slide 23: Kernal Space (privileged mode)
	Slide 24: Kernal Space (privileged mode)
	Slide 25: User Space (unprivileged mode)
	Slide 26: Drivers – Bridging Software and Hardware
	Slide 27: Real Time Operating System (RTOS)
	Slide 28: Real Time Operating System (RTOS)
	Slide 29: Programming Microcontrollers
	Slide 30: Development Environment
	Slide 31: Boot Loaders
	Slide 32: BOOTSEL, RESET, or BOOT0
	Slide 33: Microprocessor
	Slide 34: Microprocessor
	Slide 35: Arduino
	Slide 36: Arduino
	Slide 37: Arduino
	Slide 38: Thonny

