Cyber-Physical Systems

Dr. Jonathan Jaramillo



Computer Architecture



3

G el

o LW s P
gggangiyy’
s ™

/

w
LEEL

o Y

/

iy

; T ?1

‘2N

Cornel”



How Does A CPU Work?

* Compiler: Source code is compiled to
assembly language.

* Assembler: Assembly is converted to
machine code.

e Linker: Machine code is combined with
libraries to create an executable file.



How Does A CPU Work?

Software

Assembly




How Does A CPU Work?

* Source Code:
* Human-readable high-level language

* Assembly:

* Low-level language with one-to-one relationship to instruction set

* Instruction Set Architecture:
* Set of building blocks that define the capabilities of the processor

* Microarchitecture:
* Physical circuit implementation of ISA

* Computer Architecture:
* Overall design of the computer chip, including ISA, I/0, Memory, Bus
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Definitions

* RAM - Random access memory
* Volatile, fast, computer memory

* EEPROM - Electronic Erasable Programable Read-only Memory
* Non-volatile, bite-level erasable, slow and less durable
* Firmware, BIOS/UEFI settings, sensor and user settings

* Flash Memory
* Non-volatile, slower than RAM, higher endurance, more storage, block
erasure
* Used in SSDs, memory cards, firmware storage



When to Use

* RAM - Random access memory
* General compute memory for when for fast larger volumes

* EEPROM - Electronic Erasable Programable Read-only Memory
* Very simple interface and control, lower power consumption, slow
 Small, frequent updates

* Flash Memory

* Faster, larger storage, cost effective
* Large, bulk storage



Instruction Sets
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Instruction Sets

* Instruction Sets
* Arithmetic Operations
* Data Movement
* Control Flow
* Logic Operations

e Micro Architecture

* How ISA is implemented in specific
circuitry

* Computer Architecture
e Structure of the all components

Cornell University System Engineering
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Complex Instruction Set Computer

* CISC architectures have a large set of instructions
e Specialized instructions
* Many clock cycles per instruction
* Instructions can directly manipulate memory

* Advantages
e Fewer instructions are needed — Easier to write

* Disadvantages
 Complex hardware, slower execution for simple operations

 Examples: x86 (Intel, AMD), System/360 (IBM)



Reduced Instruction Set Computer

* RISC architectures have a few set of fixed length instructions

 Small and simple instruction set
* Each instruction takes one clock cycle
* Load/store registers independent of memory

* Advantages
* Simple, fast execution, with simpler hardware

* Disadvantages
* More instructions to accomplish a task

* Examples: ARM, RISC-V



Instruction Sets
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Instruction Sets Examples

A loop to manually copy memory

N X ] MOV RO, source ; Load source address
MOV R1l, dest ; Load destination address
MOV R2, #100 ; Set loop counter (100 bytes)

MOV RCX, 100 ; Move 100 (number of elements) into RCX

MOV RSI, source ; Load source address into RSI Ll

. . . LDRB R3, [RO], #1 ; Load byte from source, increment source pointer
MOV RDI, dest ; Load destination address into RDI ! "

] ) . STRB R3, [R1], #1 ; Store byte to destination, increment destination pointer
REP MOVSB ; Copy 100 bytes from source to destination SUBS R2, R2, #1 ; Decrement counter

BNE loop ; If counter not zero, repeat loop

18 Cornell University System Engineering



Source Code Languages

e Compiled (C/C++, Rust):

* Converted to assembly and then assembled into machine code

* Interpreted (Python, JavaScript, PHP)
* Analyzed line by line, each line is used to call pre-defined machine code

* Just In Time (JIT) (Java, C#)

* Lines of code are analyzed one at a time, dynamically compiled and run

* Bytecode and Virtual Machines (Jaca, C#)
* Codeis compiled to intermediary “bytecode” and executed on a VM

* Scripting Languages (Bash, PowerShell)



When to Use

* Compiled: System programming, embedded systems
* High performance, efficient, slower development, platform specific

* Interpreted: Rapid prototyping, automation, scripting
* Slower performance, portable, easy to use, fast iterations

* JustIn Time: Web applications, enterprise applications
* Dynamic optimization, portable, startup delays, high resource usage

* Bytecode and VMs: Cross-platform software, enterprise
* Portable, slower than compiled, faster than interpreted, VM dependent

* Scripting Languages: Automation, system administration



Programming Languages

* Complexity

#include <iostream>

int main() {
std::cout << "Hello, World!" << std::endl;

} return 0; print("H6110, World!")
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Operating Systems



Kernal Space (privileged mode)

 Kernel - Core of the OS with full hardware access
* Manages process scheduling, memory, file systems, system calls
* Enforces Security and isolation

* Drivers — Kernel modules that enable hardware communication
* Translate hardware-specific operations to standardized OS function

* Memory Management Unit — controls physical memory allocation
* Maps processes virtual address to physical address
* |[solates processes



Kernal Space (privileged mode)

* System Calls — interface between user applications and the kernel
* File I/0O, network access, memory allocation

* Interrupts and Exceptions
* Interrupts — events that trigger a response
* Exceptions —faults in software
* Incoming network packets, timer ticks, invalid memory access



User Space (unprivileged mode)

* Applications —run with limited access to prevent accidental or
malicious harm

* Cannot directly access hardware, must use kernel

* Runtime libraries — provide high-level abstraction
* Typically statically or dynamically linked to application



Drivers — Bridging Software and Hardware

Specialized software program that allows the (OS) or firmware
running on a CPU or MCU to interact with hardware devices

* Abstraction
* Presents a simplified, uniform interface

* Communication Management
* Command translation and data formatting

* Resource Management
* System resource allocation and interrupt handling

* Error Handling



Real Time Operating System (RTOS)

* Operating system designhed to process data and execute tasks
within strict timing constraints.

* Ensures predictable, deterministic responses to events.

* Not all microprocessors can run RTOS.



Real Time Operating System (RTOS)

e Non-deterministic code execution
* Interrupt latency

* Incompatible memory
* Branch prediction and speculative execution



Programming
Microcontrollers



Development Environment

 Manufacturer’s IDE and Toolchain
 Compiler (usually GCC based or propriety)
* Debugger — hardware/software (Joint Test Action Group, Serial Wire Debug)
* Peripheral and Code Config Tools (clocks, timers, communications)

* Set up the Project
* Target microcontroller
* Compiler Options
e Startup code



Boot Loaders

* Small program on dedicated memory designed to load and run the
main application.

* Key Functions
* |nitialization — start up main application and hardware
* Boot Management —determines where to find and load firmware
* Firmware updates —uses USB, UART, SPI, etc. to upload new firmware
* Fail-safe — can revert to safe or backup firmware in case of corruption



BOOTSEL, RESET, or BOOTO

1. Boot from main flash memory
* Default behavior
* Load firmware from flash

2. Bootinto bootloader mode
* When BOOTSEL is pushed during power up
* Receives new firmware over communication interface
* Performs diagnostic and recovery procedures



Microprocessor

Software
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Arduino

Arduino File Edit Sketch

BareMinimum

put your setup code here, to

+}

void loop(Q) {

put your main code here, to

Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter
WIiFi101 / WIFININA Firmware Updater

Board: "Arduino Nano Every" Boards Manager...
Registers emulation: "ATMEGA328"
Port

Get Board Info

Arduino AVR Boards

Arduino Mbed OS Edge Boards

Arduino Mbed OS Nano Boards

Programmer Arduino Mbed OS Nicla Boards

Burn Bootloader Arduino Mbed OS Portenta Boards
Arduino megaAVR Boards

Arduino Uno WiFi Rev2

Arduino SAMD (32-bits ARM Cortex-M0+) Boards

Arduino Nano Every, ATMEGA328 on /dev/cu.usbmodem13401



Arduino

void setup() {
pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);

digitalWrite(LED_BUILTIN, LOW);
delay(1000);

}
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Arduino
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Thonny —

General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which kind of interpreter should Thenny use for running your code?

MicroPython (Raspberry Pi Pico)

Details

Connecting via USE cable:

Connec r device to the computer and select corresponding port below
(look for your device name, "USE Serial” or "UAR

If you can't find it, you may need to install proper USE driver first.

Connecting via WebREPL:

If your device supports WebREPL, first connect via serial, make sure WebREPL is enabled
(import webrepl_setup), connect your computer and device to same network and select
< WebREPL > below

Board CDC @ COM3

Interrupt working program on connect
Synchronize device's real time clock

Uze local time in real time clock

Restart interpreter before running a script

Install or update MicroPython

Cancel
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