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What are Cyber-Physical Systems?

Actuators Sensors

Computational 
Systems

Physical Process 
(Plant)
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Wired Communication
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Fundamentals of Wired Communication
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• Signal Transmission – Analog vs Digital and Modulation
• Synchronous vs Asynchronous 
• Duplexing – Half-duplex vs Full-duplex
• Topology – Bus, single master vs multi-master 
• Addressing – Static vs Dynamic addressing
• Electrical Characteristics – Pullup and pulldown resistors
• Framing and Data Packets 
• Protocol layering and abstraction 
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Analog Vs Digital
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• Analog Signals - Continuous signals that represent information 
using a continuous range of values. They vary smoothly over time 
and can take on any value within a given range. 
• Examples: audio signals, temperature readings.

• Digital Signals - Discrete signals that represent information using 
binary values (0 and 1). They change in distinct steps or levels 
and are commonly used in computers and digital devices. 
• Examples: computer data, digital audio.
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Analog Vs Digital
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• When to use analog:
• High Bandwidth
• High Frequency
• Real-time response
• Example: FM radio

• When to use digital:
• High noise environments
• Encryption, compression, error correction
• Storage
• Example: video camera



Cornell University System Engineering

Modulation
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• A modulated signal is a signal in which one or more 
characteristics of a carrier wave are varied in accordance with 
the information signal being transmitted. 

• The purpose of modulation is to efficiently transmit information 
over long distances or through specific communication channels.

• Carrier wave: A high-frequency signal used as the base signal.
• Information signal: The data or message to be transmitted.
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Amplitude Modulation
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Frequency Modulation
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Phase Modulation
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Modulation
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• Information signal can be analog or digital.
• Carrier signal frequency must be higher than the information 

signal.
• Nyquist-Shannon Sampling Theorem – Carrier frequency must be at least 

twice the information frequency.
• Often is significantly higher.
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Synchronous vs Asynchronous 
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• Synchronous communication protocols – transmit data using a 
shared clock signal between the sender and receiver to ensure 
that data is sent and received at precisely coordinated intervals.

• Asynchronous communication protocols – do not rely on a 
shared clock. Instead, the sender and receiver synchronize data 
at the beginning of each transmission using start and stop bits.
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Synchronous vs Asynchronous 
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• When to use synchronous:
• Faster communication speeds
• Extra wires
• Example: I2C – up to 3.4Mbps – half-duplex

• When to use asynchronous:
• Slower communication speeds
• Limited wires
• Example: UART – up to 115.2kbps, full-duplex
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Duplexing
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• Half duplex – Can only communicate one direction at a time
• Full duplex – simultaneous bidirectional communication
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Topology
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• Point-to-point 
• Example: UART, RS-232 

• Bus – multiple devices connected to the same wires
• Example: I2C, CAN bus

• Star – Multiple devices connected to the same central point
• Examples: Ethernet, USB

MCU Sensor

MCU

Sensor Sensor Sensor Sensor

Hub

Sensor

Sensor Sensor

Sensor
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Addressing
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• Static Addressing
• Dynamic Addressing MCU

Sensor Sensor Sensor Sensor
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Addressing
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MCU

ToF Sensor 1
x27

ToF Sensor 2
x27

Temp Sensor
x40

Sensor
x77
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Electrical Characteristics
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• Pull-up & Pull-down resistors for open-drain/open-collector
• Wire capacitance – delay in state transition
• Time constant: 𝜏 = 𝑅𝐶

• Power vs Speed 
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Frames & Packets
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• “Unit of Data” or “Message”
• Contains meta data and data
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Considerations
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• Twisted Pair Cabling 
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Considerations
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• Twisted Pair Cabling 
• Differential signals
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Considerations
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• Twisted Pair Cabling 
• Differential signals
• Shielded Cables  
• Cable Routing
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Considerations
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• Twisted Pair Cabling 
• Differential signals
• Shielded Cables  
• Cable Routing
• Termination Resistors
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Wired Communication 
Protocols
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Inter-Integrated Circuit (I2C)

• Short distance, low-speed communication between circuit board 
components

• Open drain, synchronous, master-slave bus topology 
• 2 wires (SCL – Serial Clock, SDA – Serial Data)
• Speeds – 100 kbps (4.7k Ω ~ 2.4mW) -> 3.4 Mbps (1k Ω ~ 15mW)
• Faster speeds = smaller resistors = more static power
• Longer wires = more capacitance = more dynamic power
• Simple, cost effective, multiple devices
• Limited to short distances and low speeds, susceptible to noise
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Inter-Integrated Circuit (I2C)
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MCU

Sensor Sensor Sensor Sensor
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Inter-Integrated Circuit (I2C)
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Temperature CO2 MicrophoneMCU
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Inter-Integrated Circuit (I2C)
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Universal Asynchronous Receiver/Transmitter

• Communication between two devices typically for debugging or 
low-speed data transfer

• Asynchronous point-to-point topology 
• 2 wires (TX – Transfer, RX – Receive)
• Speeds – 9600 bps up to 1 Mbps
• Simple, widely supported, low resource overhead
• Limited to two devices, requires precise clock matching
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Universal Asynchronous Receiver/Transmitter

33

MCU Sensor
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Universal Asynchronous Receiver/Transmitter
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Controller Area Network (CAN Bus)

• Robust communication in noisy environment, such as automotive 
and industrial

• Asynchronous bus topology with support for priority-based 
arbitration schemes

• 2 wires (CAN_H, CAN_L), differential signaling
• Speeds – 125 kbps up to 1 Mbps
• Extremely robust, fault tolerant, arbitration (message priority)
• Higher power, slow communication speeds
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Controller Area Network (CAN Bus)

36

MCU

Sensor Sensor Sensor Sensor
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Controller Area Network (CAN Bus)
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RS-485

• Designed for reliable multi-point communication over long 
distances in industrial environments

• Asynchronous, half or full duplex
• 2 or 4 wires – twisted pairs of differential signaling
• Speeds – up to 10 Mbps
• Long distance (up to 1200m), high noise immunity
• Slower than ethernet, requires extra hardware for multi-point 
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RS-485
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Universal Serial Bus (USB)

• High-speed, plug-and-play communication standard for 
peripherals

• Synchronous star topology using host-peripheral model
• 4 wires (VCC, GND, D+, D-), differential signaling
• Speeds – 500 Mbps (USB 2.0), 5 Gbps (USB 3.0), 40 Gbps (USB 4.0)
• High speed and versatile, supports charging and power delivery
• Limited scalability, shorted cable lengths, requires transceivers or 

controllers
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Universal Serial Bus (USB)

• Device Configuration Descriptor
• Transfer Type
• Endpoint Address
• Maximum Packet Size

41
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Universal Serial Bus (USB)

• Control Transfer
• Device configuration and setup

• Interrupt Transfer
• Small, time-sensitive packets (e.g., keyboard strokes) 

• Bulk Transfer
• Large, non-time sensitive data

• Isochronous Transfer 
• Time-critical data without error checking (e.g., video/audio streaming)
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Serial Peripheral Interface (SPI)

• High-speed, short distance communication for MCUs and 
peripherals

• Synchronous point-to-point (with device selection)
• 4 wires (MISO, MOSI, SCLK, SS), one SS per device
• Speeds – 50 Mbps 
• High-speed, efficient continuous data transfer, simple, full duplex
• More wires than I2C, no addressing, limited to short distances

43



Cornell University System Engineering

Serial Peripheral Interface (SPI)
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Ethernet

• Supports internet communication protocols, LANs, and industrial 
automation

• Pseudo-synchronous (no dedicated clock), star or tree topology
• Defines Physical Layer and Datalink Layer
• 4 or 8 wires – twisted pairs of differential signaling
• Speeds – Fast Ethernet (10/100 Mbps), Gigabit Ethernet (1000 Mbps) 
• Extremely scalable, standardized, supports advanced features
• Requires switches, routers, ruggedized components, latency 

45



Cornell University System Engineering

Ethernet
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Ethernet
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Ethernet Type Speed Medium Distance Application

Fast Ethernet 100 Mbps Copper (Cat5e) 100 m Legacy systems, small 
networks

Gigabit Ethernet 1 Gbps Copper, Fiber 100 m (copper), 5 km 
(fiber)

Standard LANs, industrial 
use

10 Gigabit Ethernet 10 Gbps Copper, Fiber 100 m (Cat6a), 10 km 
(fiber) Data centers, backbones

25/40/50 Gigabit 25–50 Gbps Fiber 100 m–several km High-speed interconnects

100 Gigabit 
Ethernet 100 Gbps Fiber Up to 40 km Data centers, backbone 

networks

Industrial Ethernet Varies Rugged Copper, 
Fiber Varies Factory automation, 

robotics

PoE Up to 100 
Mbps Copper 100 m Powering IP devices (APs, 

cameras)
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Ethernet

Standard Medium Data Rate Distance

10BASE-T Twisted-pair copper 10 Mbps 100 meters

100BASE-TX Twisted-pair copper 100 Mbps 100 meters

1000BASE-T Twisted-pair copper 1 Gbps 100 meters

1000BASE-SX Multi-mode fiber 1 Gbps 550 meters

1000BASE-LX Single-mode fiber 1 Gbps 5–10 kilometers

10GBASE-T Twisted-pair copper 10 Gbps 100 meters

10GBASE-SR Multi-mode fiber 10 Gbps 300 meters

10GBASE-LR Single-mode fiber 10 Gbps 10 kilometers
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Ethernet
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Peripheral Component Interconnect (PCIe)

• High-speed interconnect for internal hardware within a computer 
over traces or dedicated connectors

• Synchronous, point-to-point
• x4, x8, or x16 slots, 4 traces (TX+, TX-, RX+, RX-) per lane
• Speeds – depends on version and number of lanes, up to 128Gbps
• Extremely high speed, low latency
• Complex and expensive implementation
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Peripheral Component Interconnect (PCIe)
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CPU/MCU Hardware Support

• Commonly supported protocols in hardware
• I2C, SPI, UART, USB
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Control 
Unit

Arithmetic 
Logic Unit

Registers L1 Cache

Memory 
Controller

Clock

Cache

CPU Core

COMs

RAM

Graphics

Storage
L2 L3
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CPU/MCU Hardware Support

• Commonly supported protocols in hardware
• I2C, SPI, UART, USB

• Advantages
• Offloading workload
• Precise timing
• Reduced Latency
• Reliability

• Bit-Banging
• Hardware Abstraction Layer (HAL) and Drivers
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Code Example – IMU over I2C
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Code Example – IMU over I2C
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Code Example – IMU over I2C

57



Cornell University System Engineering

Circuit Board

System Design Considerations
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MCU or CPU

USB Webcam
Core

Clock

Cache

SPI

I2C

USB

EEPROM
GPIO 

Expander ADC
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Circuit Board

System Design Considerations
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MCU or CPU

USB Webcam
Core

Clock

Cache

SPI

I2C

GPIO

EEPROM
GPIO 

Expander ADC



Cornell University System Engineering

Circuit Board

System Design Considerations
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MCU or CPU

USB Webcam
Core

Clock

Cache

SPI

EEPROM

I2C

GPIO 
Expander

USB(H) USB 
Controller

ADC
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System Design Considerations

61
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System Design Considerations
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PCIe

PCIe
Ethernet

USB

RS-485 CANbus
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Wireless Communication
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Wireless Communication Considerations

• Flexibility
• No physical wiring, easy deployment and scalability

• Mobility
• Connectivity even while in motion

• Diverse Range
• Short to long distances

• Adaptability
• Accommodates requirements such as low poser, high reliability, low 

latency, high throughput 
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Challenges of Wireless Communication

• Latency and Reliability
• Applications require ultra-low latency and deterministic communication

• Interference
• Crowded environments can degrade performance

• Security
• Eavesdropping, spoofing, and other cyberattacks

• Power Consumption
• Battery-operated devices require low-power protocols 

• Bandwidth
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Electromagnetic Frequency Band
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International Telecommunications Union
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IEEE Designation
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Conventions
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Frequency Allocations
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Design Considerations

Higher frequencies
• Higher data throughput - faster 

communication speeds
• More energy required
• Shorter range - best for line of 

sight
• Smaller antennas
• Less congestions 

Lower frequencies
• Lower data throughput
• Less energy required
• Longer range – more diffraction
• Obstacle penetration
• Operates better in harsh 

conditions
• More congestion

71
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Frequency Band Frequency 
Range

Licensed/ 
Unlicensed Common Applications Key Design Considerations

Low Frequency (LF) 30-300 kHz Licensed Subsurface communications, RFID, 
long-distance telemetry

Long range, low data rate, susceptible to noise, 
good penetration in water and ground

High Frequency (HF) 3-30 MHz Licensed Long-range telemetry, 
maritime/aviation communication

Ionospheric reflection enables long distances, low 
data rate

Very High Frequency 
(VHF) 30-300 MHz Licensed Industrial automation, TV and radio 

broadcasts
Good range, requires minimal line of sight, 
interference-prone

Ultra High Frequency 
(UHF) 300 MHz - 3 GHz Mixed (depends 

on application)
IoT (Zigbee, LPWAN), RFID, cellular 
(4G/5G), Wi-Fi (2.4 GHz)

Short-medium range, higher data rates, obstacle 
attenuation becomes significant

Industrial, Scientific, and 
Medical (ISM) - Sub-GHz

433 MHz, 868 
MHz (EU), 915 
MHz (US)

Unlicensed 
(region-specific)

LoRaWAN, LPWAN, Zigbee, low-
power sensor networks

Long range, low power, good penetration through 
obstacles, may face interference

2.4 GHz ISM Band 2.4-2.5 GHz Unlicensed Wi-Fi (802.11b/g/n), Bluetooth, 
Zigbee, drones, consumer IoT

High interference (congested band), moderate 
range, supports high data rates

5 GHz ISM Band 5.15-5.825 GHz Unlicensed Wi-Fi (802.11ac/ax), high-speed 
wireless communication

Shorter range than 2.4 GHz, less interference, high 
throughput

Cellular Bands 
(3G/4G/5G)

600 MHz - 6 GHz 
(region-specific) Licensed Mobile networks, autonomous 

vehicles, smart grids
Guaranteed QoS, medium to long range, high 
reliability, costly spectrum licensing

Millimeter-wave 
(mmWave)

24-30 GHz, 60 
GHz, 77 GHz

Licensed/ 
Unlicensed

5G ultra-fast links, radar 
(automotive), high-bandwidth 
sensing

Very high data rates, short range, requires line of 
sight, affected by atmospheric absorption

60 GHz (V-band) 57-64 GHz Unlicensed 
(region-specific)

High-speed indoor wireless links, 
ultra-fast IoT

Line of sight critical, very high data rate, low 
interference but range-limited

77 GHz (Automotive 
Radar) 76-81 GHz Licensed Advanced driver assistance systems 

(ADAS), collision detection
High resolution sensing, short range, high 
susceptibility to atmospheric attenuation

Sub-Terahertz (THz) 100 GHz - 1 THz Emerging 
(experimental)

High-resolution imaging, future high-
speed wireless

Experimental, short-range communication, 
atmospheric absorption challenges
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Multiple Access Techniques

• Frequency Division Multiple Access (FDMA)
• Divide a band into smaller bands with no interference between sub-bands

• Time Division Multiple Access (TDMA)
• Communication channel is divided into time slots 

• Code Division Multiple Access (CDMA)
• Each uses is assigned a unique orthogonal code
• All users transmit using the same frequency, signal is decoded 

• Orthogonal Frequency Division Multiple Access (OFDMA)
• Frequency is divided into orthogonal subcarriers 
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Multiple Access Techniques 

Technique Resource 
Division Efficiency Synchronization Complexity Key 

Applications

FDMA Frequency
Moderate (wastes 
bandwidth due to guard 
bands)

Low Low
Early cellular 
networks, 
satellite

TDMA Time
Higher than FDMA (but 
requires overhead for 
synchronization)

High (precise 
time control) Medium

GSM (2G), 
satellite, private 
radio

CDMA Code (spread 
spectrum)

High (can degrade if 
many users share 
spectrum)

Low-moderate High
3G networks, 
GPS, military 
comms

OFDMA
Frequency + 
Time 
(subcarriers)

Very high (dynamic 
allocation, minimal 
interference)

High High 4G LTE, 5G, Wi-
Fi 6
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Modulation 

• Amplitude Modulation
• Frequency Modulation
• Phase Shift Keying

• Binary phase shift keying
• Quadrature Phase shift keying

• Quadrature Amplitude Modulation 
• Amplitude and Phase are modulated
• 16 symbol (4 bits per symbol) and 64 symbol (6 bits per symbol) QAM

• Baud rate vs bit rate
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Antennas 

• Omnidirectional Antenna
• 360 degree – low range, wide coverages
• Wifi routers, cell towers

• Directional Antenna
• Concentrate power in a single direction, point to point
• Radar, satellite uplinks

• Patch Antenna
• Radiates in one direction with a wide beam
• Wireless devices, GPS, drones

76



Cornell University System Engineering

Topology

• Star – all devices connected to centralized node
• Mesh – all devices connected to all other devices (within range)
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Topology

• Star – Simpler, cheaper, each device supports a single connection
• Mesh – More robust, adaptable, expandable range
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Topology

• Star – Single point of failure, expensive base station infrastructure 
• Mesh – Expensive, complex device hardware
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Wireless Communication Protocols

• Bluetooth
• Wifi
• Smart-home Protocols
• Cellular
• Low-Power Wide Area Networks
• Radio Frequency ID

80



Cornell University System Engineering

Bluetooth

• 2.4 GHz with typical range of 10m but can be extended to 100m
• Bandwidth of 1-2 Mbps 
• Versions

• 2.0+: wireless headphones, keyboards, mice
• 4.0 BLE: ultra low power consumption (fitness devices, battery powered)
• 5.0: mesh network, enhanced coexistence, extended range and bandwidth
• 5.1 & 5.2: direction finding

• Bluetooth Profiles for specific applications
• Bluetooth Special Interest Group define standards
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Bluetooth
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Wifi

• 2.4 GHz, 5 GHz, 6 GHz
• Bandwidth of 11 Mbps up to 9.6 Gbps
• Versions

• Wifi 4 (2009): 2.4 and 5 GHz, 600 Mbps (MIMO)
• Wifi 5 (2014): 5 GHz, beamforming, mesh
• Wifi 6 (2019): 2.4 and 5 GHz, Orthogonal Frequency-Division Multiple 

Access and Target Wake Time for efficiency in dense environments

• Bluetooth Profiles for specific applications
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Wifi
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Smart-Home Protocols

• Low-power, mesh topology, 10-100m range

• Zigbee – 2.4 GHz, 250 kbps
• Open standard, supports up to 65,000 devices 

• Z-Wave – Sub-GHz band, 100 kbps
• Less interference, highly standardized, good interoperability, proprietary 

• Matter – Uses Wifi, Thread, Ethernet
• Easily interactable, adaptable depending on protocol
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Range vs Bandwidth
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Cellular

• 5G – Low latency, up to 10Gbps, large-scale deployment (1 million 
devices per km2)
• Real time, dense, high data throughput 

• 4G – 30-50ms latency, 10-100Mbps, excellent coverage
• Rural deployment, monitoring and control

• Cellular V2X
• Direct – Communication between vehicles
• Network-based – Centralized communication with cellular towers
• Supports vehicle to vehicle, infrastructure, pedestrian, network, etc.
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Cellular
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Low-Power Wide Area Networks (LPWAN)

• Base stations or cellular towers, ultra-low power, very-low 
bandwidth, excellent range, poor mobility

• Sigfox – Proprietary tower network
• 50km range, 100 bps

• LoRaWAN – open standard, private or public towers
• 15km range, 0.3-50 kbps

• NB-IoT – cellular-based (LTE)
• LTE coverage, 250kbps, SIM card
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Low-Power Wide Area Networks (LPWAN)
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Radio Frequency ID
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Frequency Band Range Data Rate Penetration Applications in CPS

Low-Frequency (LF) 10 cm to 1 meter Low Strong penetration through 
materials

Access control, livestock 
tracking, industrial 
automation

High-Frequency (HF) 10 cm to 1.5 meters Moderate Good but affected by 
metals/water

Smart cards, inventory 
tracking, healthcare

Ultra-High Frequency 
(UHF)

Up to 12 meters 
(passive) / 100 meters 
(active)

High Affected by metals/water but 
suitable for long-range 
tracking

Supply chain, logistics, 
vehicle tracking

Microwave RFID Up to 30 meters Very High Susceptible to interference Real-time location 
systems (RTLS), high-
value asset tracking
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Radio Frequency ID
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Networks
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Open Systems Interconnection

OSI is a reference model from the International Organization of 
Standardization (ISO)

“Provides a common basis for the coordination of standards 
development for the purpose of systems interconnection.”

ISO/IEC 7498-1:1994 Information technology — Open Systems Interconnection — Basic Reference 
Model: The Basic Model. June 1999. Introduction. Retrieved 26 August 2022.
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https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html
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Communication Architectures

95

Application 

Presentation

Session

Transport

Network

Data Link

Physical
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Communication Architectures
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Application 

Presentation

Session

Transport

Network

Data Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures
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Application 

Presentation

Session

Transport

Network
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures
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Application 

Presentation

Session

Transport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures
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Application 

Presentation

Session
• Ensures reliable data transfer between devices and segmentation of data for easier transmission
• Provides end-to-end connection management, error recovery, flow control, and data integrityTransport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures
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Application 

Presentation
• Establishes, manages, and terminates communication sessions between applications
• Handles dialog control, allowing multiple applications to communicate over a networkSession
• Ensures reliable data transfer between devices and segmentation of data for easier transmission
• Provides end-to-end connection management, error recovery, flow control, and data integrityTransport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures
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Application 
• Translates data between application layer and network, ensuring compatibility
• Data compression/decompression, encryption/decryption, format translation and binary encodingPresentation
• Establishes, manages, and terminates communication sessions between applications
• Handles dialog control, allowing multiple applications to communicate over a networkSession
• Ensures reliable data transfer between devices and segmentation of data for easier transmission
• Provides end-to-end connection management, error recovery, flow control, and data integrityTransport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures

102

• Provides network services directly to applications and handles high-level protocols for data transfer
• Responsible for user interfaces such as email, file transfer, and web browsing Application 
• Translates data between application layer and network, ensuring compatibility
• Data compression/decompression, encryption/decryption, format translation and binary encodingPresentation
• Establishes, manages, and terminates communication sessions between applications
• Handles dialog control, allowing multiple applications to communicate over a networkSession
• Ensures reliable data transfer between devices and segmentation of data for easier transmission
• Provides end-to-end connection management, error recovery, flow control, and data integrityTransport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Communication Architectures
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Application 

Presentation

Session

Transport

Network

Data Link

Physical

Abstract
Easier to use
Functionality

Simpler
Hardware Specific
Less Features
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Communication Architectures
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• HTML, SCP, SSH, SMTP, DNS, FTPApplication 
• SSL/TLS, JPEG, GIF, MPEGPresentation
• SMB (server message block), NetBIOS, RPC (remote procedure call)Session
• TCP (transmission control protocol), UDP (user datagram protocol)Transport
• IP (internet protocol), ICMP (internet control message protocol), routersNetwork
• Ethernet, MAC addressing, Wi-fi, Bluetooth, UARTData Link
• Radio wave, cables, fiberoptic, transistor logicPhysical
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Example - Modbus

• Modbus RTU: Serial Communication (RS-485)
• Datalink layer for framing and physical layer (RS-485) for serial 

communication
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Example - Modbus

• Modbus RTU: Serial Communication (RS-485)
• Datalink layer for framing and physical layer (RS-485) for serial 

communication

• Modbus TCP/IP: Ethernet Based
• Application layer (data structure), Transport layer (TCP), Network Layer 

(IP), Datalink layer (ethernet)
• What is the physical layer?
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Data Frame
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• Definition – Unit of data in the Data Link Layer (layer 2)
• Components

• Header – source/destination MAC addresses, other transmission info
• Payload – Variable length, contains “packets”
• Frame Check Sequence (FCS) – cyclic redundancy check 
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Data Packet

108

• Definition – Unit of data in 
the Network Layer (layer 3)

• Components
• Header – 

source/destination IP 
addresses, other 
transmission info

• Payload – Variable length, 
contains “segments” or 
“datagrams”
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• Definition – Unit of data in 
the Transport Layer (layer 4)

• Components
• Header – source/destination 

port addresses, other 
transmission info

• Payload – Variable length, 
contains data generated in 
higher layers
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UDP Datagram

110

• Definition – Unit of data in 
the Transport Layer (layer 4)

• Components
• Header – source/destination 

port addresses, length, 
checksum

• Payload – Variable length, 
contains data generated in 
higher layers
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• Provides network services directly to applications and handles high-level protocols for data transfer
• Responsible for user interfaces such as email, file transfer, and web browsing Application 
• Translates data between application layer and network, ensuring compatibility
• Data compression/decompression, encryption/decryption, format translation and binary encodingPresentation
• Establishes, manages, and terminates communication sessions between applications
• Handles dialog control, allowing multiple applications to communicate over a networkSession
• Ensures reliable data transfer between devices and segmentation of data for easier transmission
• Provides end-to-end connection management, error recovery, flow control, and data integrityTransport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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Layer 7 – Application Layer

• User types www.example.com into their web browser
• Chrome/Safari generates an HTTPS request for the webpage
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Layer 6 – Presentation Layer

• Text is formatted using HTML, images and video compressed.
• Data is encrypted as needed
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Layer 5 – Session Layer

• A session is established, allowing for continuous interactions
• Butten presses
• Text boxes 
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Layer 4 – Transport Layer 

• Data is broken into smaller segments
• Transport Control Protocol (TCP) is used for errors and reliability 

checks
• Specifies port
• Three-way handshake

• Device sends a synchronization request
• The sever acknowledges
• Your device confirms and the connection is established
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Layer 4 – Transport Layer 

• Segments of encrypted HTML 
data go into the “Data” field of 
the TCP packet
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Layer 3 – Network Layer

• Handles converting domain names to IP addresses
• Handles Network Address Translation (NAT)
• IPv4 address shortages 
• Switches IP address by using ports

• TCP message 192.10.143.17:50000 -> www.example.com
• Gateway device will readdress 203.10.45.11:60000 -> www.example.com
• Upon response it readdress the response by checking the NAT
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Layer 2 – Datalink Layer

• TCP Packet is placed inside of a data frame and sent to the correct 
machine

• MAC address is used to identify machine
• Wifi uses frames defined by IEEE 802.11
• Ethernet uses frames defined by IEEE 802.3
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Layer 1 – Physical Layer 

• Radio waves or electrical voltages are used to transmit the signal 
between machines
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Sense Encode

Wifi

Ethernet

Wifi

Ethernet

Router1 Router2

Switch

Decode Visualize
IP:10.48.19.242

Port:554

IP:10.48.19.267
Port:558
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Backup Drive
Embedded 

System
Security 
Camera

Personal 
Computer

Wi-Fi Router
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ISO Model

1. Camera captures video
2. Embedded system compresses using code (H264)
3. Compressed data is broken in UDP datagrams
4. UDP datagrams are added to IP packets
5. IP packets are added to Wi-fi frames
6. Wi-fi router removes frame header to get destination IP address
7. IP packet is added to new frame and sent to backup drive
8. Backup drive removes frame and IP packet heads and saves data
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Backup 
Drive Embedded 

System
Security 
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Personal 
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Wi-Fi 
Router



Cornell University System Engineering

ISO Model

1. Physical Layer
• Radio waves

2. Data Link Layer
• Wi-fi (IEEE 802.11) and MAC 

addresses

3. Network Layer
• IP addresses

4. Transport Layer
• UDP

5. Session Layer
• RTSP (Setup, play, pause)

6. Presentation Layer
• Codec (H246)

7. Application Layer
• RTSP and video management 

system 
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Drive Embedded 

System
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IP:10.48.19.167
Port:50000

www.google.com

DNS

8.8.8.8
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IP:10.48.19.167
Port:50000

www.google.com

DNS
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IP:10.48.19.167
Port:50000

IP:10.48.69.11
Port:50000
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IP:10.48.19.167
Port:50000

IP:10.48.69.11
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IP:10.48.19.167
Port:50000

VPN

IP:10.48.69.11
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Port:60000
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• Provides network services directly to applications and handles high-level protocols for data transfer
• Responsible for user interfaces such as email, file transfer, and web browsing Application 
• Translates data between application layer and network, ensuring compatibility
• Data compression/decompression, encryption/decryption, format translation and binary encodingPresentation
• Establishes, manages, and terminates communication sessions between applications
• Handles dialog control, allowing multiple applications to communicate over a networkSession
• Ensures reliable data transfer between devices and segmentation of data for easier transmission
• Provides end-to-end connection management, error recovery, flow control, and data integrityTransport
• Determines the best path to travel from source to destination via logical addressing and routing
• Controls IP addressing, packet fragmentation and reassembly, routing and forwardingNetwork
• Establishes, maintains, and decides how data is transferred between devices on a network
• Controls framing, MAC, error detection/correction, and flow controlData Link
• Physical layer responsible for connection between devices
• Controls transmission and reception of raw bitsPhysical
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IP:10.48.19.167
Port:50000
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