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Sensor Systems
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What are Cyber-Physical Systems?

Actuators Sensors

Computational 
Systems

Physical Process 
(Plant)
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Computational and Physical 

• Sensors: A device that detects and measures physical properties 
from the environment and converts them into electrical signals 
that can be processed by a digital system.
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Sensor Foundations 

• Analog to Digital Converter (ADC) – Circuit that converts analog 
electrical signals into digital values

• Most sensor generate analog electrical signals
• Temperature sensor, accelerometer, gyroscope

• Some sensors generate digital signals
• Binary sensors, pulse-based timing sensors
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Analog to Digital Converters
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Analog to Digital Converters (ADCs)

• An electronic device that converts a continuous analog signal 
(such as voltage or current) into a discrete digital 
representation.
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Analog to Digital Converters (ADCs)

• Sampling 
• The ADC takes periodic simples of the analog signal

• Quantization 
• Each sample is assigned a specific digital value based on its amplitude

• Encoding 
• The quantized values are converted into binary

• Analog signals – continuous in time and value domains
• Digital signals – Discrete in time and value domain
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Discretization vs Quantization 
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Discretization vs Quantization 
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Discretization vs Quantization 
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Shannon-Nyquist Theorem
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• A continuous signal can be perfectly reconstructed from its 
discrete samples if and only if the signal is sampled at a rate at 
least twice the highest frequency component present in the 
signal. 
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Shannon-Nyquist Theorem
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Shannon-Nyquist Theorem
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Shannon-Nyquist Theorem
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Signal Reconstruction

16



Cornell University System Engineering

Aliasing

• When a continuous signal is under sampled, causing different 
signals to become indistinguishable, resulting in distorted or 
misleading reconstructions of the original signal.

• Sampled data may appear to have lower frequency that it actually 
does.
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Aliasing
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Wagon Wheel Effect
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ADC Features

• Resolution – “Quantization” or the number of bits in the digital 
output

• Sampling Rate – frequency at which data is converted to digital 
vales

• Reference Voltage – Value against which analog values are 
compared

• Input Range – Min and max analog values that can be measured
• Accuracy – How close the ADC’s output can match the analog 

value
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Other Consideration 

• Signal to noise ratio
• Temperature, clock timing, shot noise, EMI, power supply

• Settling Time 
• Time it takes ADC’s internal circuits to stabilize after input change

• Power Consumption
• Latency 

• Delay between sampling and obtaining digital output
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Types of ADCs

• Successive Approximation Registers (SARs)
• Delta-Sigma 
• Pipeline 
• Dual Slope
• Flash
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Successive Approximation Register

• Approximate the analog signal in steps using a binary search 
algorithm
• Digital to analog converter compares the register value to the analog 

signal and flips bits successively until the values match
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Successive Approximation Register

• Advantages
• Moderate to high resolution (usually 8-16 bits)
• Efficient power consumption (ideal for portable devices)
• Moderate speed 

• Disadvantage
• Trade off between speed and resolution

• Widely used 
• Embedded systems, automotive, industrial, communication, portable 

devices
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Successive Approximation Register

25

Resolution (Bits) Common Sample Rate Range

8-bit SAR ADC 100 kHz – 50 MHz

10-bit SAR ADC 100 kHz – 20 MHz

12-bit SAR ADC 50 kHz – 10 MHz

14-bit SAR ADC 10 kHz – 5 MHz

16-bit SAR ADC 1 kHz – 2 MHz

18-bit SAR ADC 1 kHz – 1 MHz

20-bit SAR ADC 10 Hz – 500 kHz
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Successive Approximation Register 

• Raspberry Pi Pico W
• 12-bit SAR
• Range 0-3.3v corresponding to 0-4096 (2^12)
• Sample Rate 500 kHz
• Channels 3 + 1 (internal temperature sensor)
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Raspberry Pi Pico W
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Delta-Sigma ADC

• Bit stream is generated corresponding to the analog input

28



Cornell University System Engineering

Delta Sigma ADC 

• The bit stream is then passed 
into a digital low pass filter 
and decimated
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Delta Sigma ADC

• Advantages
• Very high resolution (up to 24 bits – 16.8 million values)
• Excellent noise reduction 
• Suitable for precision measurements

• Disadvantage
• Moderate sampling speeds

• Widely used 
• Precision measurement systems, audio systems
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Dual Slope ADC

• The input voltage is integrated 
over a fixed amount of time 
(charging).

• The results is de-integrated 
(discharging) via a known 
reference voltage back to zero 
and the time is measured. 
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Dual Slope ADC

• Advantages
• High noise immunity (particularly due to AC interference)
• Very accurate and stable
• Low power consumption

• Disadvantage
• Slow 

• Widely used 
• Digital multi-meters, precision instruments
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Flash ADC

• Input is fed into an array of 
comparators, each connected to a 
specific reference voltage.

• Reference voltages are generated 
using a resistor ladder generating a 
“thermometer code”

• The thermometer code is converted 
to binary in a single clock cycle
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Flash ADC

• Advantages
• Extremely fast, fastest conversion speed among ADC types
• No latency

• Disadvantage
• High power consumption
• Significant die area due to large number of comparators (2^n – 1)
• Low resolution (typically 4-8 bits) 

• Widely used 
• Radar, RF communication, oscilloscopes
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ADCs Comparisons
ADC Type Resolution Speed Power ConsumptionComplexity Accuracy Noise Immunity Applications

SAR Medium to 
High 
(8-18 bits)

Medium 
(Up to 10 
MHz)

Low to Medium Medium High Medium General-purpose 
ADCs, 
Microcontrollers, 
Data Acquisition

Delta-Sigma Very High 
(16-24 bits)

Slow 
(Few kHz 
to 1 MHz)

Medium to High High Very High Excellent Audio, Precision 
Measurements, 
High-Resolution 
Sensors

Dual-Slope Very High 
(16-24 bits)

Very Slow 
(Few Hz 
to kHz)

Low Low Very High Excellent Digital Multimeters, 
Precision Weighing 
Scales

Flash Low to 
Medium 
(4-10 bits)

Very Fast 
(Up to 
GHz)

Very High Very High Low Poor High-Speed Signal 
Processing, Radar, 
Oscilloscopes
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Sensor Fundamentals
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Categories

• Passive
• Detect and measure energy originating from the environment.

• Active
• Require emission of power to sense the environment

• Analog
• Produce a continuous output signal that is directly proportional to the 

measured quantity

• Digital
• Output discrete signals, often binary values
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Passive Sensors

• Thermocouples
• Photodiodes
• Piezoelectric Sensors
• Cameras
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Passive Control System
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Active Sensors

• Ultrasound
• LiDAR
• RaDAR
• Optical Encoder
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Analog Sensors

• Thermistor
• Potentiometer
• Microphone
• Hall Effect Sensor
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Digital Sensors

• Encoder
• Digital Camera
• IMU
• Digital Temperature Sensor

42



Cornell University System Engineering

Sensor Characteristics
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Sensitivity

• Refers to how much the sensor output changes per unit change in 
the input

• Typically expressed as a ratio
• Example:

• Thermocouple: Type-K thermocouple has a sensitivity of 41 uV/C
• Accelerometer: MEMS unit has a sensitivity of 100mV/g

• Relevance: 
• Higher sensitivity improves precision
• Impacts choice of ADC
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Sensitivity - Example
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Resolution

• Smallest change in the input that the sensor can detect
• Typically depends on the ADC, related to LSB
• Example:

• Digital Temp Sensor: 0.0078C
• Optical Encoder: 1000 pulses per revolution

• Relevance: 
• Affects precision of control
• Poor perception
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Resolution - Example
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Accuracy

• How close the sensor’s measurement is to the true value
• Affected by noise, drive, and environmental conditions
• Example:

• Digital Barometer: +- 1hPa
• Industrial Load Cell: +- 0.05% of full scale

• Relevance: 
• Impact criticality of the system
• Poor perception
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Accuracy - Example
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Precision

• How repeatable a sensor reading is
• Example:

• Gyroscopes: have a bias that changes very slowly

• Relevance: 
• Impacts the frequency of calibration
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Precision Vs Accuracy
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Other Factors

• Linearity
• Drift
• Response Time
• Hysteresis

• Sensor will give different outputs 
depending on whether the value is 
increasing or decreasing 
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Sensing Technologies
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Resistive Sensors

• Resistance is governed by Ohms Law
• 𝑉 = 𝐼𝑅

• External stimulant changes resistance
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Measuring Resistance

• Ohm Meter
• Apply a known voltage and measure current
• Simple, quick, limited by contact resistance and test lead quality

• Wheatstone Bridge
• 3 variable resistors are tuned to balance current flow
• High accuracy and sensitivity, ideal for small changes, requires stable power

• Current-Voltage Method
• Known current is pushed through resistor and voltage is measured
• Accurate, requires precision current supply, sensitive to noise
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Importance to CPS

• Simple and cost effective
• Versatile – strain, pressures, temperature
• Robust – many resistive sensors have a long lifespan
• Compatible – easily interfaced with ADS and microcontrollers
• Challenges

• Drift and hysteresis
• Environmental sensitivity
• Linearity issues
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Strain Gauge

• Thin Wire or foil that changes resistance when deformed
• Structural health monitoring, industrial wight systems, biomedical
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Thermistor (NTC/PTC)

• Resistance changes depending on temperature
• HVAC systems, battery temperature regulators, overheat protection
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Resistive Force and Pressure Sensor

• Force-sensitive resistors are polymer film that change resistance 
under pressure

• Robotics (gripping), electronic prosthetics, touch interfaces
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Potentiometers

• A variable resistor with a moveable wiper that changes resistance 
based on position

• Servo feedback, position tracking , volume control 
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Capacitive Sensors

• Capacitance is the ability of a system to store charge

• 𝐶 =
𝜀𝐴

𝑑

• 𝐶 = Capacitance
• 𝜀 = Permittivity of the material 
• 𝐴 = Area of the plates
• 𝑑 = Distance between the plates
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Measuring Resistance

• Charge-Discharge Method
• Charge at known rate and discharge is measured over time
• Used in capacitive touch sensors, can be implemented on microcontroller

• Frequency-Based Methods
• Time constant: 𝜏 = 𝑅𝐶 or Oscillator: 𝑓 =

1

2𝜋 𝐿𝐶

• Used in proximity sensors

• Capacitive Wheatstone Bridge
• Similar to resistive bridge but with capacitors
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Importance to CPS

• Very high sensitivity
• Non-contact measurement – reduced wear
• Low power consumption
• Wide application range
• Challenges

• Nonlinear response
• Environmental sensitivity
• Parasitic capacitance 
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Proximity Sensors

• Measures changes in capacitance from nearby conductive objects
• Touch free gesture control, security systems, industrial automation
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Touch Sensors

• Uses the body’s natural capacitance to detect touch
• Smartphones, wearable devices, automotive control panels

65



Cornell University System Engineering

Displacement Sensors

• Measures small movements between plates
• Robotics, MEMS, microphones
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Humidity and Moisture Sensors

• Moisture changes the permittivity of the air or soil changing the 
capacitance

• HVAC systems, soil moisture sensors, medical devices
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Inductive Sensors

• Induction is the ability of a system to hold energy in the form of 
electrical current in coils of wire. 
• Coil – wire wound into a loop that current is passed through
• Oscillator circuit – generates alternating magnetic field around the coil
• Target – A metallic object disrupts the field
• Detection circuit – measures changes in inductance or energy loss
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Inductance

• 𝐿 =
𝑁2𝜇𝐴

𝑙

• 𝐿 = Inductance
• 𝑁 = Number of turns in coil
• 𝜇 = Magnetic permeability of core
• 𝐴 = Cross sectional area of the coil
• 𝑙 = Length of the coil
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Importance to CPS

• Non-contact operation – no mechanical wear
• Highly reliable in harsh conditions – dirt, dust, temperatures
• Fast response times – ideal for real time performance
• Long lifespan compared to mechanical switches
• Challenges

• Only works with metal objects
• Limited sensing range
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Inductive Proximity Sensors

• Metical objects change the magnetic permeability of the system
• Robotics, industrial conveyer belts, factory automation
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Inductive Loop Sensors

• A large inductive coil detects the presence of metallic objects by 
measuring eddy current changes

• Traffic light control, parking lot occupancy, 
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Inductive Gear Tooth Sensor

• Measures the presence of a rotating metal gear
• Robotics, industrial motors, vehicle ABS systems
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Piezoelectric Sensors

• Operate based on the “piezoelectric effect”, where certain 
crystalline materials generate electric charge when subject to 
mechanical stress.

• Quartz, lead zirconate titanate, barium titanate, polyvinylidene 
fluoride

• Linear model: 𝑄 = 𝑑 ⋅ 𝐹

• Generated charge is converted to voltage signal using charge 
amplifiers or high impedance voltage measurement circuits.
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Importance to CPS

• High speed, high frequency sensing
• Impact and force measurement 
• Acoustic wave detection
• Energy harvesting for self powered wireless sensors
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Piezoelectric Force and Pressure Sensors

• Converts mechanical force into electrical signal
• Robotics, medicine, automotive (airbags), aerospace (airpressure)
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Piezoelectric Accelerometer

• By attaching a known mass to a piezoelectric force sensor, you 
create an accelerometer

• Vibration monitoring in aerospace and manufacturing
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Piezoelectric Microphones

• Vibrational forces on piezoelectric sensor can pick up a wide 
range of frequencies

• Microphones, sonar, seismic activity, instruments
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Piezoelectric Energy Harvesters

• The charge is collected and processed using rectifiers and storage 
circuits (batteries and capacitors).

• Wearables and transportation systems
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Infrared Sensing

• Relies on electromagnetic radiation in the infrared spectrum 
(700nm-1mm)
• Near-IR (.7-1.4um) – fiberoptic communication and night vision
• Mid-IR (1.4-8um) – thermal imaging and remote sensing
• Far-IR (8-1000um) – passive heat detection and climate monitoring
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Passive Infrared Sensing

• Detect changes in IR radiation from moving objects
• Composed of two pyroelectric sensors
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Passive Infrared Sensing

• Advantages
• Low power and low cost
• Reliable for motion detection

• Limitations
• Can't detect stationary objects
• Requires line of sight

• Automatic light, doors, occupancy 
detection
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Thermal Infrared Sensing (Thermography)

• Uses infrared cameras to detect emitted heat patterns
• Cryogenic Sensors – Use cooled detectors 

• Highly expensive and used for military, aerospace, scientific applications

• Microbolometers – detect IR radiation passively
• More affordable and used commercially, medical devices, industry
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Thermal Infrared Sensing Applications

• Industrial and Manufacturing 
• Overheating detection in electrical systems
• Monitor mechanical wear

• Building and Smart Infrastructure
• Energy efficiency audits
• Leaky pipes

• Medical
• Fever, inflammation, breast cancer detection
• Vascular disorders
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Normalized Difference Vegetative Index

• 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷

• 𝑁𝐼𝑅 = Near-Infrared (~850nm) 
• Strongly reflected by plant chlorophyll

• 𝑅𝐸𝐷 = Red light (~650nm)
• Strongly absorbed by plants for 

photosynthesis

• Healthy vegetation – NDVI close to 1
• Stressed or sparce vegetation – NDVI 

closer to 0
• Bare soil or non-vegetation – NDVI near -1
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Active IR Sensor

• Shines IR light and measures reflectance
• Use for obstacle avoidance in robotics, optical encoders, and 

gesture recognition (paper towel dispensers) 
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Infrared Spectroscopy

• Uses IR absorption to identify chemical composition
• Application

• Gas sensing
• Food quality
• Biomedical diagnostics
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Ultrasonic Sensors

• Ultrasonic sound waves are typically 20-200kHz
• Time-of-flight

• 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
Speed of Sound ⋅ 𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦

2

• Doppler Effect
• Δ𝑓 =

2𝑓0𝑣

𝑐
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Ultrasonic Transducers

• A transducer is a device that convers electrical energy to sound 
waves and vice versa.

• Types of transducers
• Piezoelectric – most common and most versatile 
• Capacitive – primarily used in MEMS sensors
• Magnetic – traditional speaker mechanism
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Importance to CPS

• Advantages
• Works in air, liquids, and solids
•  Non-contact sensing – ideal to delicate objects
• Works day night – unlike cameras, no light is required
• Low cost compared to light-based methods

• Limitations
• Cannot detect soft surfaces well
• Limited range compared to light-based methods
• Affected by air temperature and humidity
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Ultrasonic Distance Sensors (Sonar)

• Measure distance using sound reflection
• Robot navigation, proximity sensing, liquid 

level sensing

• Signal Processing
• Threshold detection
• Echo Filtering
• Temperature compensation 

• Transducer
• Single transducer
• Double transducer
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Transducer Array

• 𝜃 = sin−1 𝜆Δ𝑡

𝑑

• High precision and 
special resolution

• Adaptable
• Computationally 

expensive
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Transit-time Ultrasonic Flow Meter

• One transducer sends a pulse upstream
• A second transducer sends a pulse downstream
• Difference in transit time is proportional to fluid
• Small pipes – same side transducers 

• 𝑣 =
𝑐

2
⋅

Δ𝑡

𝑡1𝑡2
 

• Large pipes – opposite side transducers
• 𝑣 =

𝑐2Δ𝑡

2𝐿

• 𝑣 =
𝐷

2 cos 𝜃
⋅

Δ𝑡

𝑡1𝑡2
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Doppler Ultrasonic Flow Meter

• Uses a single transducer to send ultrasonic waves into the fluid
• Working principle

• The wave reflects off particles or bubble in the liquid
• Doppler shift if proportional to the fluid velocity

• 𝑣 =
𝑐⋅Δ𝑓

2𝑓0 cos 𝜃
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Ultrasonic Flow Meters

• Transit-time Ultrasonic Flow Meters
• Water distribution systems
• HVAC systems
• Industrial flow monitoring
• Motion sensing

• Doppler Ultrasonic Flow Meters
• Wastewater flow monitoring (particles required)
• Blood flow measurement 
• Industrial slurry and mixed-phase fluid monitoring
• Motion sensing
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Ultrasonic Imaging (Echograph)

• Wave Frequency: 1-15MHz
• Higher frequencies – better resolution, shallower penetration
• Lower frequencies – better penetration, lower resolution

• Pulse Repetition Frequency (PRF): 1-10kHz
• Higher frequencies – faster imaging, may cause range ambiguity
• Lower frequencies – better depth resolution, slower frame rate

• Advantages
• Significantly Cheaper than alternative methods
• No radiation 

• Disadvantages – can’t penetrate bone or air
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Ultrasonic Imaging (Echograph)

• Brightness Mode (B-Mode)
• 2D imaging based on amplitude of return signal

• Doppler Ultrasound
• Used to evaluate heart function and blood flow

• 3D and 4D Imaging
• Amplitude and time-of-flight to create 3D images

• Elastography – tissue stiffness 
• Contrast-Enhanced – uses microbubble contrast agents
• Ultrasound Therapy – breaks down tissue 
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Non-Destructive Testing (NDT – Ultrasound)

• Flaws in structural materials cause 
boundaries that reflect a portion of the 
sound wave

• Pulse Echo Method
• Uses single transducer

• Through-Transmission Method
• Uses two transducers

• Applications
• Railways, bridges, buildings, aircraft, 

turbine blade, pipes, 3D printing
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Hall Effect Sensor

• The Hall effect is a fundamental 
physical phenomenon that describes 
the generation of a voltage 
perpendicular to both the current and 
the magnetic field in a conductor.

• When a magnetic field is applied 
perpendicular to a current carrying 
conductor, charge carriers experience 
the Lorentz force, causing them to 
accumulate on the side of the 
conductor.
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Hall Effect Sensor

• 𝑉𝐻 =
𝐵⋅𝐼

𝑞⋅𝑛⋅𝑑

• 𝑉𝐻 = Hall Voltage
• B = Magnetic flux density
• I = Current
• q = Charge of an electron
• n = Charge carrier density (electrons/m^3)
• d = Thickness of Hall element
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Hall Effect Sensor in CPS

• Analog Hall effect sensors
• Digital Hall effect sensors
• Encoders
• Current sensor
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Electrochemical Sensors

• Electrochemical sensors facilitate a redox reaction at an 
electrode surface, creating an electrical signal. 

• Redox reaction
• Oxidation – substance loses an electron 
• Reduction – substance gains an electron

• When the number of electronics in the reaction aren’t equal, they 
can be ‘provided’ or ‘collected’ by the sensor electrode.
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Electrochemical Sensor Example

• Carbon monoxide (CO) sensor
• 𝐶𝑂 + 𝐻2𝑂 ⟶ 𝐶𝑂2 + 2𝐻

+
+2𝑒

− 
• CO oxidizes at the electrode, releasing two electrons
• The electrode collects the electrons, generating a measurable current

• Oxygen (O2) sensor
• 𝑂 + 4𝑒

−
+4𝐻

+
⟶ 2𝐻2𝑂

• O2 is reduced at the electrode, accepting four electrons
• The electrode provides the electrons, generating a measurable current
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Measuring Electrochemical Sensors

• Current-based Sensing
• A constant voltage is provided 

and electron flow (current) is 
measured

• Voltage-based Sensors
• No external voltage is applied

• 𝑉 =
𝑅𝑇

𝑛𝐹
ln

𝑂𝑥

𝑅𝑒𝑑

• 𝑉 = Measured voltage
• 𝑅 = Gas constant

• T = Temperature
• n = Number of electron
• F = Faraday’s constant
• Ox = Concentration of oxidized
• Red = Concentration of reduction
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Chemicals

• Oxygen (O₂) - Medical oxygen sensors, combustion monitoring

• Carbon Monoxide (CO) - Air quality monitoring, gas safety

• Hydrogen (H₂) - Hydrogen fuel cell monitoring

• Sulfur Dioxide (SO₂) - Industrial pollution monitoring

• Nitrogen Oxides (NO, NO₂) - Automotive emissions, environmental monitoring

• Chlorine (Cl₂) - Water treatment, industrial gas safety

• Ozone (O₃) - Air quality monitoring, sanitation

• Ammonia (NH₃) - Industrial and agricultural monitoring

• Hydrogen Sulfide (H₂S) - Sewer gas detection, industrial safety

• Volatile Organic Compounds (VOCs) - Air quality, chemical exposure monitoring
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Ions

• pH (H⁺ ions) - Water quality, medical diagnostics
• Sodium (Na⁺) - Blood sodium monitoring, food industry
• Potassium (K⁺) - Cardiac monitoring, agricultural soil testing
• Chloride (Cl⁻) - Salinity monitoring, sweat analysis
• Calcium (Ca²⁺) - Water hardness testing
• Fluoride (F⁻) - Drinking water monitoring, toothpaste quality control
• Nitrate (NO₃⁻) - Agricultural runoff detection, environmental monitoring
• Lead (Pb²⁺) - Heavy metal pollution analysis
• Mercury (Hg²⁺) - Toxic metal detection in food & water
• Copper (Cu²⁺) - Corrosion analysis, industrial effluent monitoring
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Biomolecules

• Enzymatic reactions, antigen-antibody reaction, DNA hybridization
• Glucose - Diabetes monitoring (glucose meters)
• Lactate - Exercise physiology, sepsis detection
• Cholesterol - Cardiac health monitoring
• Uric Acid - Kidney function monitoring
• Proteins (Antibodies/Antigens) - Pathogen detection
• Neurotransmitters (Dopamine, Serotonin) - Neurological research, 
mental health studies
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Organic Compounds

• Redox or enzymatic catalysis
• Ethanol (Alcohol) - Breathalyzers, fermentation monitoring
• Methanol - Fuel cell technology
• Formaldehyde - Industrial safety, air quality control
• Hydroquinone (Antioxidants) - Pharmaceutical analysis
• Ascorbic Acid (Vitamin C) - Food quality testing, nutritional 
research
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Industrial and Environmental Pollutants

• Heavy Metals (Pb, Hg, Cd, As) 
• Industrial wastewater monitoring, environmental safety

• Nitrates (NO₃⁻), Phosphates (PO₄³⁻)
• Agricultural runoff control, eutrophication prevention

• Peroxide-based Disinfectants
• Food & beverage sterilization monitoring

• Pesticides (Organophosphates, Carbamates)
• Agricultural and food safety
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Detecting One Chemical at a Time

• Choice of electrode material
• Platinum, gold, carbon-based electrodes

• Use of enzyme-based recognition
• Enzyme-modified electrodes targe one analyte

• Selective Membranes & Ion-Selective Electrodes (ISEs)
• Membranes only allow specific ion to reach the electrode

• Applied Potential Control (for Amperometric Sensors)
• Different voltages allow different redox reactions to occur
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Electrochemical Sensors
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Photodiodes

• A p-n junction semiconductor that generates a current when 
exposed to light

• Photovoltaic mode (zero bias)
• Generates output voltage proportional to light intensity
• Solar power, energy harvesting, optical receivers

• Photoconductive mode (acts like a variable resistor)
• Reverse voltage is applied to increase response speed
• Highspeed optical communication and light meters 
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Photodiodes 
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Phototransistors

• Light sensitive transistor where light acts as a base current
• Higher sensitivity than photodiodes
• Can operate in on/off mode or linear response
• Light sensitive “switch”
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Light Detection and Ranging (LiDAR)

• Time of flight mechanism
• Laser emits a pulse towards a target
• Light reflects back from the surface
• The sensor measures the time delay

• Frequency Modulated Continuous wave
• A modulated (usually frequency) light signal is produced
• The phase of the returning signal is measured
• The phase difference indicates distance to target
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Light Detection and Ranging (LiDAR)

• Time of flight mechanism
• Works over longer distances
• High accuracy (~cm)

• Frequency Modulated Continuous wave
• Measures distance and velocity (Doppler effect)
• Higher sensitivity
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Mechanical LiDAR

• Spinning mirror that rotates 360 degrees
• Advantages

• Up to 300m range
• Wide field of view

• Disadvantages
• Moving mechanical parts have higher risk of failure
• Slower collection speed
• Resolution depends on scanning speed
• Expensive

• Automotive, robotics, surveying
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Solid State LiDAR

• Uses optical phase array or MEMs mirrors to direct laser
• Advantages

• No moving parts
• Faster than mechanical
• Lower power consumption

• Disadvantage
• Lower range (200m)
• Smaller field of view (120 degrees)

• Automotive, robotics, surveillance 
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Flash LiDAR

• Illuminates the entire area at once and uses a camera-like 
mechanism to capture a 3D picture

• Advantages
• Very fast
• Compact

• Disadvantages
• Limited range (50m)
• Low resolution
• High sensitivity to noise 

• Smartphone devices, autonomous drones, industrial automation
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LiDAR
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Time-of-Flight Sensor

• “Mini”, solid-state LiDAR sensor
•  Direct Time-of-flight sensors

• Precise timing to measure exact delay
• Single-photon detection – using photomultiplier tube

• Indirect Time-of-flight sensor
• Amplitude modulation (sinusoidal or square)
• Measures phase lag
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Time-of-flight Sensor 

• Tend to be shorter range (1-10m)
• Point sensors or array (8x8 pixels)
• Low cost (less than $30)

122



Cornell University System Engineering

Laser Interferometry

• Extremely high precision measurement 
• Industrial Automation & Precision Manufacturing

• Surface alignment
• Thickness measurements
• Displacement
• Calibration

• Domains
• Aerospace, semiconductors, high-end optics
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Laser Interferometry
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Applications of Laser Interferometry 

• Calibration of CNC machines, robotic arms, industrial tools
• Quality control for semiconductor wafers, glass, metal
• Optical component alignment
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Microelectromechanical (MEM) Sensors

• Miniaturized sensing device that integrates electrical and 
mechanical components at the micro-scale

• Manufactured using semiconductor fabrication techniques
• Characteristics

• Size: Microns to millimeters
• Low-power
• Functionality: motion, pressure, temperature,
              light, magnetic, chemical
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MEMS Sensing Modes

• Capacitive
• Piezoelectric
• Piezoresistive
• Thermosensitive
• Optical
• Hall Effect
• Electrochemical
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MEMS Accelerometer

• Proof Mass – tiny mass that move when accelerated
• Suspension System (spring) – holds proof in place
• Sensing Mechanism – converts displacement to electricity

• Capacitive, piezoelectric, piezoresistive
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MEMS Accelerometer

• Linear Acceleration – due to motion
• Velocity – integration 
• Position – double integration

• Gravitational Force – always down
• Gravity vector is projected into new axis
• Trigonometry
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MEMS Accelerometer
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MEMS Accelerometer

• Noise
• Thermal noise
• Resonate frequency
• Poor mechanical design
• Electrical noise
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MEMS Gyroscope

• Measure Angular Speed
• Angular position - integration

• Vibrating Proof Mass – oscillates back and forth
• Coriolis Effect: 𝐹𝑐 = −2𝑚 𝛺 × 𝑣

• Sensing Mechanism
• Capacitive, piezoelectric/resistive
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MEMS Gyroscope

• Vibrating structure
• Ring
• Tuning fork
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MEMS Gyroscope – Angular Position

• Angular position can be determined from angular speed
• angular_position += angular_speed * dt

• MEMS gyroscopes have a non-zero average when stationary (drift)
• Changes slowly with time and temperature

• Discretization error – from integration
• Solutions

• Integrate quickly
• Calibrate
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MEMS Magnetometer 

• Senses magnetic field strength
• Modes

• Hall Effect (most common)
• Magneto resistive
• Lorentz Force 

• Very noisy
• Susceptible to electric motors
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Inertial Measurement Unit

• Accelerometers
• Absolute pitch and roll
• Very noisy

• Gyroscopes
• Very low noise
• Drifts over time

• Magnetometers 
• Very noisy
• Constant magnetic field
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IMUs

137
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IMUs
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Applications

• Consumer Electronics
• Smartphones, wearables, gamming controllers

• Automotive Safety
• Airbag deployment, electronic stability control, GPS

• Industrial & Structural Monitoring
• Vibration Sensing, tilt sensors

• Aerospace & Defense
• Drones, aircraft, spacecraft, navigation

• Medical & Healthcare
• Fall detection, prosthetics 
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IMU Challenges

• Accelerometer ambiguity 
• Distinguishing between movement and tilt

• Magnetometer reliability
• Very susceptible to noise 

• Sensor fusion algorithms
• Lag vs noise
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MEMS Pressure Sensor

• Sense changes in 
• Absolute pressure
• Differential pressure
• Gauge pressure

• Mechanisms
• Piezoresistive
• Capacitive
• Resonant
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MEMS Pressure Sensors

• Automotive & Transportation
• Intake air manifold sensor for engine control, tire pressure, altitude

• Medical 
• Blood pressure, raspatory ventilators, prosthetics and exoskeletons

• Industrial
• HVAC, process control for fluid flow

• Consumer Electronics
• Wearables and smart home devices
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MEMS Microphone

• Specially designed pressure sensor
• Uses capacitive sensing
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MEMS Optical Sensor

• Photodetectors
• Micromirrors
• Diffraction Gratings
• Optical Filters
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MEMS Optical Sensor - Applications

• LiDAR
• Medical imaging 
• Fiber optic
• 3D scanning
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MEMS Humidity & Electrochemical Sensor

• A humidity-sensitive material (polymer, ceramic, or oxide film) 
absorbs water molecules from the air.
• This changes the material’s capacitance, resistance, or thermal 

properties

• Electrochemical sensor works based off redox reaction
• Metal-oxide semiconductor

• A metal oxide (SnO₂, ZnO, TiO₂) changes resistance when exposed to gas
• High sensitivity to toxic and combustible gases
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Cameras

• A device that captures light and converts it into a digital image.
• Lens – focuses light onto sensor
• Aperture – controls the amount of light entering the camera
• Shutter – regulates exposure time
• Image Sensor – converts light into electrical signal
• Processor & Storage – converts raw sensor data into usable image
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Cameras – Operating Principle
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Bayer Interpolation (Demosaicing)
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Bayer Interpolation (Demosaicing)
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• Human Eyes 
• S-cones 

• ~420 nm
• Blue

• M-cones 
• ~530 nm
• Green

• L-cones 
• ~560 nm
• Red
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Yellow

• How do we see yellow?
• True Yellow Light (~580 nm)
• A Combination of Red (~650 nm) and Green (~530 nm) Light

• Yellow light stimulates L-cones and M-cones
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Cameras and CPS

• Real-time Monitoring
• Object Detection and Recognition
• 3D Mapping and Depth Sensing
• Thermal & Infrared Imaging
• Quality Inspection and Defect Detection
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Types of Cameras

• RGB (visible light)
• Infrared & Thermal
• LiDAR
• High-speed
• Hyperspectral & Multispectral
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Camera Parameters

• Resolution & Pixel Size
• Frame Rate
• Shutter Type (Global Vs Rolling)
• Low-light Performance
• Spectral Range
• Connectivity & Latency
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Resolution & Sensor Size 

• More Pixels -> Higher resolution
• -> Higher spatial frequency
• -> Less aliasing

• Bigger Sensor -> More light
• -> Better low light performance
• -> Less noisy images
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Frame Rate

• Higher Frame Rate
• Higher temporal frequency 
• Less light per image

• Exposure time
• How long the camera sensor 

is exposed to incoming light

• Trade-offs
• Blurriness
• Brightness
• Noisiness
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Shutter Type

• Rolling Shutter
• Captures image one row at a time

• Global Shutter
• Captures entire image at once
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Low-Light Performance

• ISO (International Organization for Standardization)
• Controls how sensitive the pixels are two incoming light
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Spectral Sensitivity 

• How sensitive to a 
particular frequency of 
light the camera sensor is
• Semiconductor properties
• Filters
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Connectivity & Latency

• Uncompressed data rate
• Bit-depth x # Channels x # Pixels # Framerate

• Video Compression
• Format (H.264)
• Codec (OpenH264)
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Camera Sensing Technologies

• Charge-Coupled Device (CCD)
• Complementary Metal-Oxide-Semiconductor (CMOS)

• Front-side Illumination
• Back-side Illumination
• Stacked

• Single-Photon Avalanche Diode (SPAD)
• Foveon X3 Sensor (Stacked RGB)
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Charge-Coupled Device

• Light absorption – photon hits a photodiode
• Number of electrons is proportional to the light intensity

• Collection – pixel stores electrons in a capacitor
• Charge remains accumulated to “readout”

• Charge transfer – stored values are shift to edge of sensor
• Readout amplifier at the edge of the camera sensor

• Digital conversation – Charge is converted to voltage
• Voltages is converted to digital value using ADC
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Charge-Coupled Device

• Advantages
• Low noise
• Good low-light performance
• High dynamic range
• Uniform pixel response

• Disadvantages
• Slower readout speeds
• High power consumption
• Expensive
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Charge-Coupled Device

• Medical
• Florescence Microscopy
• X-ray & CT Scanners

• Industrial Control & Security
• Defect detection
• Low-light cameras

• Scientific Research
• Astronomy & space exploration 
• Spectroscopy
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Complementary Metal-Oxide-Semiconductor

• Same as CCD, but each pixel has its own amplifier & readout circuit
• Column-wide ADC (rolling shutter)

• Front-side illuminated
• Older tech, lower efficiency

• Back-side illuminated
• +80% efficiency

• Stacked 
• Separated photodiode
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Complementary Metal-Oxide-Semiconductor

• Same as CCD, but each pixel has its own amplifier & readout circuit
• Column-wide ADC (rolling shutter)

• Front-side illuminated
• Low-cost sensors

• Back-side illuminated
• Smartphones

• Stacked 
• Sony Alpha cameras, AI vision
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Complementary Metal-Oxide-Semiconductor

• Advantages
• High speed readout
• Low power consumption
• Cost effective
• Embedded processing capabilities

• Disadvantages
• Higher noise 
• Lower dynamic range
• Rolling shutter
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Complementary Metal-Oxide-Semiconductor

• Automotive
• Advanced Driver Assist
• LiDAR

• Healthcare
• Endoscopy & Microscopy
• Wearables

• Smartphones
• Apple’s lidar sensor
• Facial recognition
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Single-Photon Avalanche Diode (SPAD)

• Measures single-photon events
• Uses avalanche multiplication (like a photo-multiplier tube)
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Single-Photon Avalanche Diode (SPAD)

• Advantages
• Can detect a single photon
• Picosecond timing precision
• Integrated into CMOS

• Disadvantages
• Sensitive to noise 
• Can require cooling
• High power consumption
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Single-Photon Avalanche Diode (SPAD)

• Depth Sensing
• LiDAR

• Optical Communication
• Deep space communication systems

• Medical & Scientific
• Positron Emission Tomography (PET)

• Security
• Object detection in darkness
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Foveon X3 Sensor (Stacked RGB)

• Silicon naturally absorbs wavelengths of light ad different depths
• Three vertically stacked photodiodes
• Advantages

• Higher color fidelity and tonal depth
• Higher resolution

• Disadvantages
• Higher noise
• Lower sensitivity
• Expensive
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Foveon X3 Sensor (Stacked RGB)

• Industrial and medical
• Color variations in chemical analysis
• Dermatology for high fidelity imaging

• Fine Art Reproduction and Money
• True-to-life colors
• Banknote & documentation verification
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What are Cyber-Physical Systems?

Actuators Sensors

Computational 
Systems

Physical Process 
(Plant)
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