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Signal Processing
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Signal Processing

• Sensor interpretation
• Control and stability
• Communication
• Diagnostics and fault detection
• Adaption and learning

3



Cornell University System Engineering

Types of Signal

• Analog
• Signal processing is performed with circuit 

components 

• Digital
• Algorithmic/computational processing 

requires real time computational systems
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Digital Signals Considerations

• Sampling frequency – Nyquist theorem
• Quantization and data types
• Computational systems

• Microcontrollers
• Digital Signal Processors (DSPs)
• FPGAs
• CPUs
• GPUs
• ASICS
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What are Cyber-Physical Systems?

Actuators Sensors

Computational 
Systems

Physical Process 
(Plant)
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Concepts in Signal Processing

• Fourier Analysis
• Filtering
• Noise Reduction
• Correlation
• Autoregressive Models
• Decimation and Interpolation
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Fourier Analysis
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Fourier Analysis

• Provides a way to 
analyze the frequency 
content of a signal

• Converts between 
time domain and 
frequency domain
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Fourier Series

• Express a periodic signal as a superposition of sinewaves

• 𝑓 𝑥 = 𝑎0 + σ𝑛=1
∞ 𝑎𝑛 cos

𝑛𝜋𝑥

𝑇
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝑇

• 𝑓 𝑥 = σ𝑛=1
∞ 𝑐𝑛 𝑒𝑖2

𝑛

𝑇
𝑥
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Example – Square Wave

• 𝑓 𝑡 =
4

𝜋
σ𝑛=1

∞ 1

2𝑛+1
sin 2𝑛 + 1 𝑡

• 𝑓1 𝑡 =
4

𝜋
sin 𝑡

• 𝑓2 𝑡 =
4

𝜋
sin 𝑡 +

1

3
sin 3𝑡

• 𝑓3 𝑡 =
4

𝜋
sin 𝑡 +

1

3
sin 3𝑡 +

1

5
sin 5𝑡
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Discrete Fourier Analysis

• x 𝑛 =
1

𝑁
σ𝑘=0

𝑁−1 𝑋[𝑘]𝑒𝑖
2𝜋

𝑁
𝑘𝑛

• 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥[𝑛]𝑒−𝑖

2𝜋

𝑁
𝑘𝑛

• Magnitude of 𝑋 𝑘  indicates 
the frequency amplitude

• 𝑓 𝑘 =
𝑘𝑓𝑠

𝑁
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Discrete Frequency Analysis in Practice

• Short-Time Frequency Transform (STFT)
• Break the signal into small windows and apply DFT

• Window Sise
• Short Window -> Good time resolution, poor frequency resolution
• Long Window -> Poor time resolution, good frequency resolution
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Discrete Frequency Analysis in Practice

• Wavelet Transform
• Dynamically shifts the window of transform
• Doesn’t decompose signal into sine waves
• Uses a “mother” wavelet 

• Better a localizing frequency content
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Signal Compression

• DFT and Wavelet transforms deconstruct a 
signal into “larger” and “smaller” features

•  x 𝑛 =
1

𝑁
σ𝑘=0

𝑁−1 𝑋[𝑘]𝑒𝑖
2𝜋

𝑁
𝑘𝑛

• 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥[𝑛]𝑒−𝑖

2𝜋

𝑁
𝑘𝑛

• Only saving some 𝑋 𝑘  will result in a loss of 
detail.
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Filtering & Noise Reduction
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Filtering 

• Define – The process of manipulating the frequency content of a 
signal

• Types of filtering
• Causal (on-line) Filtering – process data points as they come in
• Non-causal (off-line) Filtering – process entire dataset at once
• Finite Impulse Response – only requires inputs
• Infinite Impose Response – requires input and all past outputs

• Applications
• Noise Reduction, Signal Extraction, System Stability
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Low-pass Filters

• Remove high-frequency content 
from a signal

• Used to remove high-frequency 
noise
• Electrical 
• Vibration
• Thermal
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Types of Low-Pass Filters

• Example
• 𝑦 𝑛 = 𝛼𝑥 𝑛 + 1 − 𝛼 𝑦[𝑛 − 1]

• Linear regression
• Fits the last N points to a line 

and projects

• Moving Average
• Averages the last N values

• Gaussian Filter
• Like moving average but 

discounts with distance
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Frequency Response
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High-Pass Filters

• Removes low frequency content
• Used to remove drift

• Gyroscope
• Audio Signals
• Spike detections 
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Types of High-pass filters

• First Order IIR
• 𝑦 𝑛 = 𝛼 𝑦 𝑛 − 1 + 𝑥 𝑛 − 𝑥 𝑛 − 1

• Moving Difference
• Subtract the mean of a moving 

window

• Low pass filters
• 𝑦 𝑛 = 𝑥 𝑛 − 𝑦𝐿𝑃[𝑛]
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Band-pass Filter

• Combines a low-pass and high-pass filter 
to only let a narrow band of frequencies 
through
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Noise Reduction

• Characterize Noise using Fourier Analysis
• High frequency
• Low frequency 
• Particular frequencies 

• Intensify latency requirements
• Causal/non-causal 

• Identify Computational resources
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Correlation and Auto 
Regressive Modeling
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Correlation

• Correlation – measurement of the similarity of two signals
• Use cases

• Pattern Matching
• Event detection
• Signal alignment for sensor fusion
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Cross Correlation

• Measures the similarity between two different signals
• Direct – performs correlation on the signal

• 𝑅𝑥𝑦[𝑘] = σ𝑛 𝑥 𝑛 𝑦[𝑛 + 𝑘]

• Advantages
• Simple, effective for short signals, 

• Disadvantages
• Computationally expensive for long signals
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Cross Correlation

• FFT-Based
• 𝑅𝑥𝑦 𝑘 = 𝐹−1{𝑋 𝑓 𝑌∗ 𝑓 }

• Advantages
• Much faster for longer signals, ideal for real-time applications
• 𝑂 𝑁𝑙𝑜𝑔𝑁

• Disadvantages
• Require zero padding
• More complex to implement
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Auto Correlation 

• Measures the similarity between a signal and itself
• Applications

• Periodic signal detection, fundamental frequency
• Fault detection, predictive maintenance
• Noise reduction 
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Auto Regressive Modeling

• A method for predicting future values from past values
• Linear model

• 𝑥 𝑛 = σ𝑖=1
𝑝

𝑎𝑖𝑥 𝑛 − 1 − 𝑒[𝑛]

• Applications
• System identification
• Prediction and forcasting
• Anomaly detection
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Decimation and Interpolation
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Decimation

• Down sampling a signal by taking every mth value.
• Low-pass filter to remove noise above the new Nyquist frequency
• Applications   

• Data reduction
• Energy efficiency
• Signal alignment
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Interpolation

• The process of increasing the sample rate of a signal by placing 
values between existing values

• Causal Interpolation
• Extrapolate previous data to new time using curve fit

• Non-causal Interpolation
• Fill in data using low-pass filter
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Concepts in Signal Processing

• Fourier Analysis
• Filtering
• Noise Reduction
• Correlation
• Autoregressive Models
• Decimation and Interpolation
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State Estimation
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State Estimation

• Process used to infer the internal state of a system that cannot be 
directly measured due to incomplete and/or noisy measurements

• Components:
• Sensors Models – Leverages sensor noise characteristics to optimally 

filter and fuse sensor readings
• System Dynamic Models – Predicts the behavior of a system based on 

equations of motion and actuator inputs
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Sensor Models

• Sensor models define the mapping from the true state of a system 
to the measurements obtained by sensors

• 𝑦 = ℎ 𝑥 + 𝑣

• 𝑦 = sensor reading
• ℎ(𝑥) = function that maps state of the system to sensor reading
• 𝑣 = sensor noise
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IMU Example

• Accelerometer Noise
• Low Pass Filter
• 𝜃𝑎_𝑙𝑝 𝑛 = 𝛼𝜃𝑎𝑐𝑐𝑒𝑙 𝑛 + 1 − 𝛼 𝜃𝑎_𝑙𝑝[𝑛 − 1]

• Gyroscope Drift
• High Pass Filter
• 𝜃𝑔_ℎ𝑝 𝑛 = 𝛼 𝜃𝑔_ℎ𝑝 𝑛 − 1 + 𝜃𝑔𝑦𝑟𝑜 𝑛 − 𝜃𝑔𝑦𝑟𝑜 𝑛 − 1
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Commentary Filter

• Combine the accelerometer low frequency component with the 
gyroscope high frequency component

• 𝜃𝑒𝑠𝑡 𝑘 = 𝛼(𝜃𝑒𝑠𝑡 + ሶ𝜃𝑔𝑦𝑟𝑜 𝑘 ∆𝑡) + 1 − 𝛼 𝜃𝑎𝑐𝑐𝑒𝑙
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Commentary Filter

• 𝜃𝑒𝑠𝑡 𝑘 = 𝛼(𝜃𝑒𝑠𝑡 + ሶ𝜃𝑔𝑦𝑟𝑜 𝑘 ∆𝑡) + 1 − 𝛼 𝜃𝑎𝑐𝑐𝑒𝑙

• When 𝛼 = 1
• Defaults to only gyroscope reading

• When 𝛼 = 0
• Defaults to only accelerometer reading
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Probabilistic State Estimation

• Classical State Estimate
• Represents the state as a 

single value

• Probabilistic State Estimation
• Represents the state as a 

probability distribution 

• Allows for combining data 
based on uncertainty 
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Linear Gaussian Sensor Model

• Sensor readings is a linear function of the state
• 𝑦 = 𝐻𝑥 + 𝑣 
• 𝑣~𝑁(0, 𝜎)
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Linear Gaussian Sensor Model

• State Estimators
• Mean
• Median
• Max 
• Min
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Maximum Likelihood Estimator

• The method that minimizes the sum of squared errors
• 𝑆𝑆𝐸 = σ𝑖=0

𝑁 (𝑦𝑖 − ෝ𝑦𝑖)2

• 𝑦𝑖 = true value
• ෝ𝑦𝑖 = Estimate (e.g. mean, median)
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Linear Bimodal Gaussian Sensor Model
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Random Sampling Consensus (RANSAC) 

• Select a subsample of the data
• Run the model on the subsample
• Measure the distance off data from model
• Select inliers and outliers
• Repeat and select model with most inliers
• Run model on inliers
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Bimodal Gaussian Sensor Model

47

• Repeat a bunch of times
• Select 10 out of 100 points
• Measure distance from mean
• Select inliers by threshold

• Select inliers of max run
• Take mean of inliers
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Motion Models
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System Dynamics

• A set of equations that govern the motion of a system
• Kinematic equations
• Newton’s laws
• Simple update

• Example – Simple update
• 𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘 + 𝑤 where 𝑤𝑘~𝑁(0, 𝑄)
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Example – Spring Mass System

• Newton’s law
• 𝐹 = 𝑚𝑎
• Forces: External (𝑢(𝑡)), Spring (−𝑘𝑥), Friction (−𝑐 ሶ𝑥)

• Equation of Motion
• 𝑚 ሷ𝑥 = 𝑢 𝑡 − 𝑐 ሶ𝑥 − 𝑘𝑥

• 𝑢 𝑡 = External Force
• 𝑥 = Position of Mass
• 𝑚 = Mass
• 𝑘 = Spring Constant
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Example – Spring Mass System

• 𝑚 ሷ𝑥 = 𝑢 𝑡 − 𝑐 ሶ𝑥 − 𝑘𝑥

• Rewrite
• 𝑥1 𝑡 = 𝑥 𝑡  
• 𝑥2 𝑡 = ሶ𝑥(t)

• Take Derivatives
• ሶ𝑥1 t = x2(t)

• ሶ𝑥2 t = ሷ𝑥1 𝑡 = −
𝑘

𝑚
𝑥1 𝑡 −

−𝑐

𝑚
𝑥2 𝑡 +

1

𝑚
𝑢(𝑡)

51



Cornell University System Engineering

Example – Spring Mass System

• ሶ𝑥1 t = x2(t)

• ሶ𝑥2 t = −
𝑘

𝑚
𝑥1 𝑡 −

𝑐

𝑚
𝑥2 𝑡 +

1

𝑚
𝑢(𝑡)

•
ሶ𝑥1(𝑡)

ሶ𝑥2 𝑡
=

0 1

−
𝑘

𝑚
−

𝑐

𝑚

𝑥1(𝑡)

𝑥2 𝑡
+

0
1

𝑚

𝑢(𝑡)

• ሶ𝑥 t = 𝐴𝑥 t + Bu(t)
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Continuous Vs Discrete Time Motion Model

• Continuous Time
• ሶ𝑥 t = 𝐴𝑐𝑥 t + B𝑐u(t)

• Discrete Time
• 𝑥𝑘 = 𝐴𝑑𝑥𝑘−1 + 𝐵𝑑𝑢𝑘

• Conversion between continuous and discrete time domain
• 𝐴𝑑 = 𝑒𝐴𝑐∆𝑡

• 𝐵𝑑 = 0׬

∆𝑡
𝑒𝐴𝑐𝜏𝑑𝜏𝐵
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Simplified Motion Model

• Systems Dynamics
• Treat 𝑢(𝑡) as a force and modeling system dynamics

• Simplified Model
• Treat 𝑢(𝑡) as a ∆𝑥 with no system dynamics 
• 𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘
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Process Noise

• Uncertainty in the system dynamic model
• 𝑥𝑘 = 𝐴𝑑𝑥𝑘−1 + 𝐵𝑑𝑢𝑘 + 𝑤

• 𝑤~𝑁(0, 𝑄)

• Every time the system propagates forward in time, you become 
less certain about its location 
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Bayesian Estimators
& Kalman Filter
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Bayes Law

𝑝 ȁ𝑥 𝑦 =
𝑝 ȁ𝑦 𝑥 𝑝 𝑥

𝑝(𝑦)
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Example

• 𝑝 ȁ𝑥 𝑦 =
𝑝 ȁ𝑦 𝑥 𝑝 𝑥

𝑝(𝑦)

• Prior – Suppose 1% of the population has a certain type of cancer
• 𝑃 𝐶𝑎𝑛𝑐𝑒𝑟 = .01 

• Sensitivity – Test identifies cancer 90% of the time when present
• 𝑃 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒ȁ𝐶𝑎𝑛𝑐𝑒𝑟 = .90

• Specificity – False positives occur 5% of the time
• 𝑃 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒ȁ𝑁𝑜 𝐶𝑎𝑛𝑐𝑒𝑟 = .05
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Example

• 𝑝 ȁ𝑥 𝑦 =
𝑝 ȁ𝑦 𝑥 𝑝 𝑥

𝑝(𝑦)

• 𝑃 ȁ𝐶𝑎𝑛𝑐𝑒𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =
𝑃 ȁ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑎𝑛𝑐𝑒𝑟 𝑃 𝐶𝑎𝑛𝑐𝑒𝑟

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

• P 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = P Positive Cancer P Cancer + P Positive No Cancer P(No Cancer)

• P 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = .90 × .01 + .05 × .99 = 0.0585

• 𝑃 ȁ𝐶𝑎𝑛𝑐𝑒𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =
.90×.1

0.0585
= 0.1538

• What is the probability that someone has cancer?
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Sensor Models

• Bayesian Estimators maximize conditional probability

• 𝑝 ȁ𝑥 𝑦 =
𝑝 ȁ𝑦 𝑥 𝑝 𝑥

𝑝(𝑦)

• 𝑥 = State
• 𝑦 = Sensor Reading

• 𝑝 ȁ𝑥 = 2𝑚 𝑦 = 2.1𝑚 =
𝑝 ȁ𝑦=2.1𝑚 𝑥=2𝑚 𝑝 𝑥=2𝑚

𝑝(𝑦=2.1𝑚)

• 𝑝 ȁ𝑦 = 2.1𝑚 𝑥 = 2𝑚 = Sensor Model
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Sensor Models

• 𝑝 ȁ𝑦 = 2.1𝑚 𝑥 = 2𝑚

• 𝑝 𝑦ȁ𝑥 =
1

𝜎 2𝜋
𝑒

−
1

2

𝑦−𝑥

𝜎

2

• Why is this important?

• 𝑝 ȁ𝑥 𝑦 =
𝑝 ȁ𝑦 𝑥 𝑝 𝑥

𝑝(𝑦)

• 𝑝 𝑥  from motion model
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Combining Motion and Sensor Models

• System Equations
• 𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘 + 𝑤 where 𝑤𝑘~𝑁(0, 𝑄)

• 𝑦𝑘 = 𝑥𝑘 + 𝑣 where 𝑣~𝑁(0, 𝑅) 

• Bayesian Filter
• Predict the state
• Update variance of prediction
• Calculate gain
• Update state estimate
• Update variance of state estimation
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Prediction Step

• System Equations
• 𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘 + 𝑤 where 𝑤𝑘~𝑁(0, 𝑄)

• Update Prediction
• ො𝑥𝑘 = ො𝑥𝑘−1 + 𝑢𝑘

• Update Prediction Variance
• 𝑃𝑘ȁ𝑘−1 = 𝑃𝑘−1 + 𝑄
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Update Step

• Calculate Gain
• 𝐾𝑘 =

𝑃𝑘ȁ𝑘−1

𝑃𝑘ȁ𝑘−1+𝑅

• Update State Estimate
• ො𝑥𝑘ȁ𝑘 = ො𝑥𝑘ȁ𝑘−1 + 𝐾𝑘 𝑦𝑘 − ො𝑥𝑘ȁ𝑘−1

• Update State Estimate Variance
• 𝑃𝑘ȁ𝑘 = 1 − 𝐾𝑘 𝑃𝑘ȁ𝑘−1

• What if 𝐾𝑘 = 1?
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Bayesian Filter

• Predict the state
• Update variance of 

prediction
• Calculate gain
• Update state estimate
• Update variance of 

state estimation
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Kalman Filter

• System Equations
• 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘  

• 𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘

• Filter
• ො𝑥𝑘ȁ𝑘−1 = 𝐴 ො𝑥𝑘−1 + 𝐵𝑢𝑘

• 𝑃𝑘ȁ𝑘−1 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄

• 𝐾𝑘 = 𝑃𝑘ȁ𝑘−1𝐴𝑇 𝐴𝑃𝑘𝑘−1𝐴𝑇 + 𝑅 −1

• ො𝑥𝑘ȁ𝑘 = ො𝑥𝑘ȁ𝑘−1 + 𝐾𝑘 𝑦𝑘 − 𝐻 ො𝑥𝑘ȁ𝑘−1

• 𝑃𝑘ȁ𝑘 = 𝐼 − 𝐾𝑘𝐻 𝑃𝑘ȁ𝑘−1
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Example – Robot Orientation

• Motion Model
• 𝐼 ሷ𝜃 = 𝜏

• Friction
• 𝐼 ሷ𝜃 = F ∙ d − b ሶ𝜃

• Force exerted by wheel
• 𝐹 =

𝐾𝑟

𝑟𝑅
Vsupply ∙ u

• Equation of motion
• ሷ𝜃 = −

𝑏

𝐼
ሶ𝜃 +

𝐾𝑟

𝑟𝑅𝐼
Vsupply ∙ u
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Example – Robot Orientation

• ሷ𝜃 = −
𝑏

𝐼
ሶ𝜃 +

𝐾𝑟

𝑟𝑅𝐼
Vsupply ∙ u

• 𝑥 =
𝜃

ሶ𝜃

• ሶ𝑥 =
ሶ𝜃
ሶሷ𝜃

=
0 1

0 −
𝑏

𝐼

𝜃
ሶ𝜃

+
0

𝐾𝑟

𝑟𝑅𝐼
Vsupply

𝑢

                                 A                               B
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Example – Robot Orientation

• ሶ𝑥 = 𝐴𝑐𝑥 + 𝐵𝑐𝑢

• 𝐴𝑐 =
0 1

0 −
𝑏

𝐼

, 𝐵𝑐 =
0

𝐾𝑟

𝑟𝑅𝐼
Vsupply

• 𝐴𝑑 = 𝑒𝐴𝑐∆𝑡

• 𝐵𝑑 = 0׬

∆𝑡
𝑒𝐴𝑐𝜏𝑑𝜏𝐵
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Example – Robot Orientation

• 𝑥 𝑘 + 1 = 𝐴𝑑𝑥 𝑘 + 𝐵𝑑𝑢

• How do we get 𝐴𝑑  and 𝐵𝑑?
• Analytically or Computationally

•  What if we don’t know 𝐾𝑟, 𝑟, or 𝑅?
• Characterize the system – input a given 𝑢 and measure the resulting ሷ𝜃

• Ignore equations of motion and use encoders

• 𝜃 𝑘 + 1 = 𝜃 𝑘 + Δ𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟
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Example – Robot Orientation

• System state 
• Orientation
• Gyroscope bias

• 𝜃 𝑘 + 1 = 𝜃 𝑘 + Δ𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑤𝜃

• 𝑏 𝑘 + 1 = 𝑏 𝑘 + 𝑤𝑏

• 𝑥 𝑘 + 1 =
𝜃[𝑘 + 1]

𝑏[𝑘 + 1]
=

1 0
0 1

𝜃[𝑘]

𝑏[𝑘]
+

1
0

Δ𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + Q

71



Cornell University System Engineering

Example – Robot Orientation

• Sensor – Gyroscope readings

• 𝑦 𝑘 = 𝜃 𝑘 + 𝑏 𝑘 + 𝑤𝑔

• y[k] = 1 1
𝜃 𝑘 + 1

𝑏 𝑘 + 1
+ R
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Example – Robot Orientation

• 𝑥 𝑘 + 1 = 𝐴𝑥[𝑘] + BΔ𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + Q

• y[k] = 𝐻x[k] + R

• 𝐴 =
1 0
0 1

, B =
1 0
0 1

, 𝐻 = [1 1]

• Filter
• ො𝑥𝑘ȁ𝑘−1 = 𝐴 ො𝑥𝑘−1 + 𝐵𝑢𝑘

• 𝑃𝑘ȁ𝑘−1 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄

• 𝐾𝑘 = 𝑃𝑘ȁ𝑘−1𝐴𝑇 𝐴𝑃𝑘𝑘−1𝐴𝑇 + 𝑅 −1

• ො𝑥𝑘ȁ𝑘 = ො𝑥𝑘ȁ𝑘−1 + 𝐾𝑘 𝑦𝑘 − 𝐻 ො𝑥𝑘ȁ𝑘−1

• 𝑃𝑘ȁ𝑘 = 𝐼 − 𝐾𝑘𝐻 𝑃𝑘ȁ𝑘−1
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