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Sighal Processing



Signal Processing

* Sensor interpretation

* Control and stability

* Communication

* Diagnostics and fault detection
* Adaption and learning



Types of Signal

* Analog

e Signal processing is performed with circuit
components

* Digital

* Algorithmic/computational processing
requires real time computational systems

yIn] =" hik] - X[ — k]

k=0




Digital Signals Considerations

* Sampling frequency — Nyquist theorem
* Quantization and data types

* Computational systems
* Microcontrollers
* Digital Signal Processors (DSPs)
* FPGAs
* CPUs
* GPUs
* ASICS



What are Cyber-Physical Systems?

Computational
Systems

Actuators Sensors

Physical Process
(Plant)



Concepts in Signal Processing

* Fourier Analysis

* Filtering

* Noise Reduction

* Correlation

* Autoregressive Models

* Decimation and Interpolation



Fourier Analysis



Fourier Analysis

* Provides a way to
analyze the frequency
content of a signal

e Converts between
time domain and
frequency domain

/ frequency




Fourier Series

* Express a periodic sighal as a superposition of sinewaves
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Example — Square Wave

« f(t) = Zn 15> sm((Zn + 1)t)
ourier Approximation with 2 Component(s)

*fi(®) =2 (sin ) 1 \/\/\/\
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Discrete Fourier Analysis

+ X[k] = Zn=g x[n]e”
* Magnitude of X|[k] indicates
the frequency amplitude
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Simulated Building Vibration Accelerometer Data

y Spectrum of Simulated Building Vibration Data




Discrete Frequency Analysis in Practice

* Short-Time Frequency Transform (STFT)

* Break the signal into small windows and apply DFT

* Window Sise
* Short Window -> Good time resolution, poor frequency resolution
* Long Window -> Poor time resolution, good frequency resolution

0 0+1 0+2 0+3 0+4 0+5 0+6 0+7 0+8 0+9 1
104 — — — — A— — — — — -+ 10 -20
91 9 20
=50
...... ||‘Hl“lmi-i”“'||l|i-!n- ° S : I4r
;IE B -_ 5 lg -50
! = 3 £0
S— — s
—— I —— T 3
—  E— g 4 r4 =70
A I A Lt -— (A"
'I1 T -
s - o — =20
i ﬁ Ly -390
IC — 'i' R —— S— e ", —IC -100
0 0 0+3 0+4 3 1 dBFS



Discrete Freqguency Analysis in Practice

* Wavelet Transform
* Dynamically shifts the window of transform
* Doesn’t decompose signal into sine waves
* Uses a “mother” wavelet

* Better a localizing frequency content




Signal Compression

ourier Approximation with 1 Component(s)

* DFT and Wavelet transforms deconstruct a ' \/\
signal into “larger” and “smaller” features -

Fourier Approximation with 2 Component(s)
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Filtering & Noise Reduction



Filtering

* Define — The process of manipulating the frequency content of a
signal
* Types of filtering
* Causal (on-line) Filtering — process data points as they come in
* Non-causal (off-line) Filtering — process entire dataset at once

* Finite Impulse Response - only requires inputs
* Infinite Impose Response —requires input and all past outputs

* Applications
* Noise Reduction, Signal Extraction, System Stability



Low-pass Filters

* Remove high-frequency content
from a signal

* Used to remove high-frequency
noise
* Electrical
* Vibration
* Thermal




Types of Low-Pass Filters

® Exa m ple Causal Linear Regression Low-Pass Filter
* y[n] = ax|n] + (1 —a)y[n — 1]
* Linear regression

* Fits the last N pointsto a line
and projects

* Moving Average
* Averages the last N values

Original Signal (Noisy)

—— Causal Filtered Signal (Linear Regression
== Causal Regression Line

¢ GaUSSian Filter —1.5F x Predicted Point

* Like moving average but
discounts with distance



Frequency Response

Frequency Response of Low-Pass Filters (Aligned Cutoff ~5 Hz)

IIR (~5 Hz cutoff)

—— Moving Average (9)

—— Linear Regression (~FIR)
Gaussian (0=2.64)
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High-Pass Filters

* Removes low frequency content

* Used to remove drift
* Gyroscope
* Audio Signals

* Spike detections b

r. Frequency (Hz)
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Types of High-pass filters

* First Order |IR
* y[n] = a(yln — 1] + x[n] — x[n — 1])
* Moving Difference

* Subtract the mean of a moving
window

Frequency Response of Common High-Pass Filters (Cutoff = 5 Hz)

* Low pass filters
* yln] = x[n] — y.p[n]




Band-pass Filter

* Combines a low-pass and high-pass filter
to only let a narrow band of frequencies
through

Low Pass,
High Pass
and Band
Pass Filters




Noise Reduction

* Characterize Noise using Fourier Analysis
* High frequency
* Low frequency
* Particular frequencies

* Intensify latency requirements
* Causal/non-causal

* |dentify Computational resources



Correlation and Auto
Regressive Modeling



Correlation

* Correlation — measurement of the similarity of two signals

e Use cases
* Pattern Matching
 Event detection

* Signal alignment for sensor fusion
Detected Point
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Cross Correlation

* Measures the similarity between two different signals

* Direct — performs correlation on the signal
* Ryylk] = XnxIn]y[n + k]

* Advantages
* Simple, effective for short signals,

* Disadvantages
* Computationally expensive for long signals



Cross Correlation

* FFT-Based
* Ryylk]l = FHXIfIY"[f 1}
* Advantages
* Much faster for longer signals, ideal for real-time applications

« O(NlogN)
* Disadvantages
* Require zero padding
* More complex to implement



Auto Correlation

* Measures the similarity between a signal and itself

* Applications
* Periodic signal detection, fundamental frequency
* Fault detection, predictive maintenance
* Noise reduction



Auto Regressive Modeling

* A method for predicting future values from past values

 Linear model

e x[n] = le a;x|n — 1] — e[n]

* Applications
* System identification

* Prediction and forcasting
* Anomaly detection



Decimation and Interpolation



Decimation

* Down sampling a signal by taking every mt" value.
* Low-pass filter to remove noise above the new Nyquist frequency

* Applications
* Data reduction
* Energy efficiency
* Signal alignment

time

Interpolation I

Decimation l




Interpolation

* The process of increasing the sample rate of a signal by placing
values between existing values

* Causal Interpolation
* Extrapolate previous data to new time using curve fit

® N O n — Ca u S a l I nte rp O lati O n S L'll_iHr;ear Extrapolation of Sensor Data Using Last Two'Points
* Fill in data using low-pass filter

= Linear Extrapolation (0.1 s)




Concepts in Signal Processing

* Fourier Analysis

* Filtering

* Noise Reduction

* Correlation

* Autoregressive Models

* Decimation and Interpolation



State Estimation



State Estimation

* Process used to infer the internal state of a system that cannot be
directly measured due to incomplete and/or noisy measurements

* Components:

* Sensors Models - Leverages sensor noise characteristics to optimally
filter and fuse sensor readings

* System Dynamic Models - Predicts the behavior of a system based on
equations of motion and actuator inputs



Sensor Models

* Sensor models define the mapping from the true state of a system
to the measurements obtained by sensors

cy=h(x)+v

* y = sensor reading

* h(x) = function that maps state of the system to sensor reading
* ¥ = Sensor noise



IMU Example

e Accelerometer Noise
e Low Pass Filter

* Qa_lp [n] = abyccerln] + (1 — “)Qa_lp [n —1]
* Gyroscope Drift
* High Pass Filter

* Ug_hp [n] = a(gg_hp [n—1] + Hgyro [n] — ngro [n — 1])

Pitch Angle (Degrees)
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Commentary Filter

* Combine the accelerometer low frequency component with the
gyroscope high frequency component

Low-Pass Filter

° Hest [k] — a(eest + égyro [k]At) + (1 — a)gaccel



Commentary Filter

* Opselk] = a(Bese + égyro [k]At) + (1 — a)Ogccer

* Whena =1
* Defaults to only gyroscope reading
* Whena =0

* Defaults to only accelerometer reading



Probabilistic State Estimation

Two Overlapping Gaussian Distributions

* Classical State Estimate
* Represents the state as a
single value
* Probabilistic State Estimation

* Represents the state as a
probability distribution
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* Allows for combining data
based on uncertainty




Linear Gaussian Sensor Model

* Sensor readings is a linear function of the state

cy=Hx+v
e N %VWC =-0.0976 (analog value) + 75.756
R2=0.96
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Linear Gaussian Sensor Model

e State Estimators
e Mean
e Median

e Max
e Min




Maximum Likelihood Estimator

* The method that minimizes the sum of squared errors

* SSE = Yiloi — 71)?
* y; = true value
 y. = Estimate (e.g. mean, median)



Linear Bimodal Gaussian Sensor Model

Bimodal Distribution Histogram (Narrower Peaks)




Random Sampling Consensus (RANSAC)

* Select a subsample of the data

* Run the model on the subsample

* Measure the distance off data from model
* Selectinliers and outliers

* Repeat and select model with most inliers

e Run model on inliers



Bimodal Gaussian Sensor Model

) Repeat a bu nCh Of tlmes Bimodal Distribution Histogram (Narrower Peaks)

* Select 10 out of 100 points
* Measure distance from mean
* Selectinliers by threshold

e Select inliers of max run
e Take mean of inliers




Motion Models



System Dynamics

* A set of equations that govern the motion of a system
* Kinematic equations
* Newton’s laws
 Simple update
* Example — Simple update
* Xj = Xp_1 + ur +w where w,~N (0, Q)



Example — Spring Mass System

* Newton’s law
e ' =ma
 Forces: External (u(t)), Spring (—kx), Friction (—cx)

* Equation of Motion
e m¥X =u(t) —cx — kx
* u(t) = External Force
* x = Position of Mass
* m = Mass
e k = Spring Constant



Example — Spring Mass System

em¥X = u(t) —cx — kx
* Rewrite
* x1(t) = x(t)
* xp(t) = x(t)
* Take Derivatives
* X1 (D) = x5(t)
* i () = 5 (D) = — (0 =X +u ()



Example — Spring Mass System

* X1 (1) = x,(t)
¢ iy (1) = =y (£) — < x5 () + - u(t)

. x1(t) x1 (1) 0
)= [—— ——] Ak H u(t)

e x(t) = Ax(t) + Bu(t)



Continuous Vs Discrete Time Motion Model

 Continuous Time
e x(t) = A x(t) + B u(t)

* Discrete Time
* X = AgXp_1 + Bauy

* Conversion between continuous and discrete time domain
e A, = eAcbt

* By = fOAt e<d1B



Simplified Motion Model

* Systems Dynamics
* Treatu(t) as a force and modeling system dynamics

* Simplified Model

* Treat u(t) as a Ax with no system dynamics
* Xk = Xi—1 + Uy,



Process Noise

* Uncertainty in the system dynamic model
* X = Adxk_l + Bduk + w
* w~N(0,Q)

* Every time the system propagates forward in time, you become
less certain about its location
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Bayesian Estimators
& Kalman Filter



Bayes Law

p(y|x)p(x)

p(x|y) = )



Example

. _ p[x)p(x)
p(x|y) )

* Prior— Suppose 1% of the population has a certain type of cancer
 P(Cancer) = .01

* Sensitivity — Test identifies cancer 90% of the time when present
* P(Positive|Cancer) = .90

* Specificity — False positives occur 5% of the time
 P(Positive|No Cancer) = .05




Example

p(y|x)p(x)
116%)

*p(xly) =
P(Positive|Cancer)P(Cancer)

P(Positive)
» P(Positive) = P(Positive|Cancer)P(Cancer) + P(Positive|No Cancer)P(No Cancer)

* P(Positive) = (.90 x.01) + (.05 x.99) = 0.0585

90X.1 — 0.1538
0.0585

* P(Cancer|Positive) =

* P(Cancer|Positive) =

* What is the probability that someone has cancer?



Sensor Models

* Bayesian Estimators maximize conditional probability

p(y|x)p(x)
146%)

* p(xly) =
e x = State

* y = Sensor Reading

p(y=2.1m|x=2m)p(x=2m)
p(y=2.1m)

* p(y = 2.1m|x = 2m) = Sensor Model

p(x =2ml|y =2.1m) =



Sensor Models

ep(y=2.1m|x =2m)

cpylx) = e 5

* Why is this important?

. _ pIx)px)
p(xly) = 22T

* p(x) from motion model

Single Gauss

Standard normal distribution

ian Distribution Histogram (Cen

tered at 2)




Combining Motion and Sensor Models

* System Equations
* Xj = Xp_1 + u; +w where w,~N (0, Q)
* V. = X + vwhere v~N(0,R)

* Bayesian Filter
* Predict the state
Update variance of prediction
Calculate gain
Update state estimate
Update variance of state estimation



Prediction Step

* System Equations
* Xj = Xp_1 + u; +w where w,~N (0, Q)

* Update Prediction
* Xj = Xp_q1 + uy

* Update Prediction Variance
* Prjk—1 = Pr—1 + 0
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Update Step

e Calculate Gain

Pklk—l Bayesian Filtering Steps: Prior, Prediction, Measurement, Posterior

 Update State Estimate
* Rk = Repe—1 + Ke(Vk — Zipe—1)
* Update State Estimate Variance
* Py = (1 — Ky ) Pyjie—1
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Bayesian Filter

e Predict the state

* Update variance of
prediction
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* Update variance of
state estimation
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Bayesian Filtering Steps: Prior, Prediction, Measurement, Posterior




Kalman Filter

Bayesian Filtering Steps: Prior, Prediction, Measurement, Posterior

* System Equations
* X, = Axp_1 + Buy + wy,
* V. = Hxp + vy,
* Filter
* Xgjk-1 = AX—1 + Bug
* Pyjk-1 = APy, A" +Q
* Ky = Pyjg—1A" (AP A" + R)™*
* Xipke = Rrepre—1 + Kie(Ve — HRpeje-1)
* Prjx = (I — KiH) Prjie—1
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Example — Robot Orientation

* Motion Model
e [O0=T1

* Friction
« [ =F-d—bo

* Force exerted by wheel
*F= ,%Vsupply U

* Equation of motion

.._ b - KT'




Example — Robot Orientation
e 0 = ——9 + LV,

rRI ' SUPPly
=[]

g R

U




Example — Robot Orientation

x =A.x + B.u

b =215~ v
— bl, = | K;
0 =7 R Vsuppy

o Ad — eAcAt

* B, = fOAteACTdTB




Example — Robot Orientation
e x|k + 1] = Agx|k] + Byu

* Howdowe get A; and B;?
* Analytically or Computationally

* What if we don’t know K,., r, or R?

* Characterize the system — input a given u and measure the resulting 6
* |[gnore equations of motion and use encoders

* Olk +1] = 0[k] + Abconcoder



Example — Robot Orientation

* System state
* Orientation
* Gyroscope bias

* Olk + 1] = 0[k] + AB.ncoqer + Wo
* blk + 1] = blk] + wy

o[k k
rxlk+ 1] = [b{k ; H] =[5 1] [H *[o] A0encoaer + @



Example — Robot Orientation

* Sensor — Gyroscope readings

* ylk] = 0lk] + blk] + w,

rylk] =11 1] [b[k 4 1]] R



Example — Robot Orientation

e x|k + 1] = Ax[k] + BAB,,coqer + Q
* y|k] = Hx[k] + R

4=, ]B—l =0

* Filter
* Xgjk—1 = AX—1 + Buy
* Pyjk—1 = APy_1A" 4+ Q
* Ky = Pyji—1A" (APyy—1A" + R)™?

* Rk = Xiepi—1 + Kie (Ve — HRyie-1)
* Prjx = (I — KiH) Pyji—1
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