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What are Cyber-Physical Systems?

Computational
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Actuators Communication Sensors

Physical Process
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Feedback Control

* Feedback control is a method of automatically regulating a
system by continuously measuring its output, comparing it to a
desired reference, and adjusting inputs to minimize the error

* Feedback control in Cyber-physical Systems
 Computational components
* System Models
» State Estimation



Non-Feedback Control

* Timers
* Rotational Stability — Spinning frisbee )
» Passive drag elements (arrows and planes) : ‘9 a

* Boiling food

Airfoil leading edge

Micro-Cavity
Actuator

Passive control




Feedback Control

* Thermostat

* Cruise control

* Autofocus

* Computer fan speed
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Concepts of Feedback Control

* State-space control
Disturbance

* PID Control —l

* Other Control Concepts [

* Adaptive Control ' - System
e Model Predictive Control
e Distributed Control Feedback




State Space Control



State Space Control

* Canonical State Space Form (Assume full Observability)
* Xp+1 = Axp, + Buy
* Vk+1 = Xk+1
* With no input system dynamics are governed by A for all time
* X1 = Axg
e Stability analysis
* Eigan values of A are given by det(Al — 4) = 0
« Unstable if |1;] > 1 for all 4;

* Marginally Stable if at least one |A;| = 1 and all other |1;| < 1
» Stableifall [4;] < 1



Stable Oscillatory System: Complex |[A| < 1

State Space Control

* Xp+1 = AXg

o Sta bi lity a n a lyS i S Marginally Stable Oscillatory System: Complex [A| =1
° |/11| > 1 for all Ai

« At least one |1;| = 1, all other
IA; <1
- A4l <1

* |f stable, system will converge to
dominate eigen value

Unstable Oscillatory System: Complex [A| > 1




Can We Change the Eigan Values?

* The system dynamics can’t change without altering the system.

e Create a control law
* Xp4+1 = Ax; + Buy
* Uk = —K.X'k

* X341 = Axk — BK.X'k = (A — BK)Xk

* Now system dynamics are governed by A — BK and its eigen values



Control in State Space Methods

* Pole Placement
* Choosing K such that the system has the exact dynamics you want

* Linear Quadratic Regulator
* Choses K to minimize a loss function
] = [ x(OF Qx() + u(®)T Ru(t)dt
* () - penalizes deviation in the state
* R - penalizes control effort



State Space Control

* Advantages
* Tools for fine tuning exact system performance exist
 Simple, predicable output
* Works for multidimensional control

* Disadvantages
* Requires exact knowledge of system
* Errors in system dynamics could result in unstable outputs
* Susceptible to noise
* Not robust



Model Predative Control



LQR State Space Control

* Linear Quadratic Regulator
e Choses K to minimize a loss function

e J =[x Qx(t) + u(®)TRu(t)de
* () - penalizes deviation in the state
* R —penalizes control effort

* Time horizon is infinite
* Once K is calculated, it is applied for all time



Discrete Finite Time Horizon

x[k +1] = f(xlk], ulk])

e | ook at a finite amount of time into the future

cu” = = aryg [omzlvn 1] 2 (X[ ] xref[i])TQ(x[i] — xref[i]) + u[i]TRu[i])

U =arg [gnzlvn 1 Zl 0 x[l]g‘r‘roererror + u[i]TRu[i])



Choosing ) & R
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Choosing ) & R

* Usually, Q & R are diagonal because state variables are independent

* When to use non-diagonal matrices
 Coupled state variables
* Coupled control variables

* Example of coupled state variables
* Angular speed and linear speed

- q 0 0 0 0 7
y 0 go 0 0 0
x=(0[@=10 0 qs qug O
v 0 0 g v Qup
L6 0 0 0 q,0 95!



Model Predictive Control

* Advantages
* Handles multi-input, multi-output systems
* Handles non-linear systems
* Receding horizon approach and accurate system prediction

* Disadvantages
* Very computationally expensive
* Errors in system dynamics could result in unstable outputs
* Tuning complexity
* Implementation complexity



Model Predictive Control

From Rest
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PID Control



Proportional Control

* Calculate error
* e(t) = Xpep(t) — x(t)

* Calculate control value
* u(t) = Kpe(t)

* What happens when there is a force resisting the system?

* Proportional control will always have steady state error



Proportional-Integral Control

* Calculate error
* e(t) = Xpep(t) — x(t)
* Calculate control value
« u(t) = Kpe(t) + K; fote(r)dr

* Removes steady state error!

* Introduces overshoot.



Proportional-Integral-Derivative Control

* Calculate error
* e(t) = Xpep(t) — x(t)

* Calculate control value
ENOEFHOERS fote(r)dr + KD%e(t)

e Can reduce overshoot

* Can produce instability



PID Control in Discrete Time




Characterizing a PID Controller

* Rise Time RESPONSE TO A UNIT STEP INPUT
 Settling Time ‘ L
* Overshoot I l
* Steady State Error Response y(t) T

Time

ims



PID Parameters

° KP
* Faster response, more reactive
e Overshoot and oscillation

 K;
* Eliminates steady-state error
* Sluggish, integrator windup
* Kp
* Reduces overshoot, adds dampening
* Sensitive to noise



Potential Problems with PID

* Constant steady-state error
* Integrator windup

* Derivative Kick
* High frequency noise
* Step change in reference signal

* Output Clamping

* Calculate u(t) is greater than
actuator can generate




Derivative Kick

dt (x'ref (t) o x(t))

. de dxref(t) dx(t)
dt  dt dt

. Axyer(t)

will spike if there is a change in reference signal

. de _ dx(t)

dt dt




Manually Tuning PID Controllers

e Startwith K; = 0and Kp =0

* Increase Kp until system begins to oscillate

* Add K, to reduce overshoot and dampen oscillations
* Add K; to eliminate steady-state error

* Repeat



Ziegler-Nichols Method

eSetK; =0and Kp =0

* Increase Kp until system starts to oscillate
* This gainis K,, and period of oscillation is T,

Controller Kp K; Kp




PID Control

* Advantages
* Simple —doesn’t require detailed system modeling or design
 Computationally efficient
* Effective for many single input-single output systems

* Disadvantages
* Limited in multi-variable systems
* Poor predictive capability
* Sensitive to tuning and nonlinearities



Adaptive Control



Adaptive Control

* Challenges in implementing feedback control systems
* Unknown system dynamics
* Changing system dynamics

* Examples
* Vehicles carry different payloads
* Electrical grid demand changes from season to season
* User of a system might change



Adaptive Control
* Xp+1 = ApXg + Brug

* Adaptive control
* As you control your system, save the last N data point
* Perform linear regression to estimate A, and By,
* Use 4, and By, to calculate new control law



Adaptive control

* Self Tuning Regulator
* Estimates A, and B in real time
* Recalculates control law (pole-place, MPC, PID) based on new A;, and By,

* Gain Scheduling (Quasi-Adaptive)
* Precomputes different laws (pole-place, MPC, PID)
* Switches or interpolates between them based on estimated A, and By,



Adaptive Control




Adaptive Control

Perormance, Precision, and Payloads:
Adaptive Nonlinear MPC for Quadrotors

.

-

Brew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann Davide Scaramuzza
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