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What are Cyber-Physical Systems?

Actuators Sensors

Computational 
Systems

Physical Process 
(Plant)
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Feedback Control

• Feedback control is a method of automatically regulating a 
system by continuously measuring its output, comparing it to a 
desired reference, and adjusting inputs to minimize the error

• Feedback control in Cyber-physical Systems
• Computational components
• System Models
• State Estimation
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Non-Feedback Control

• Timers
• Rotational Stability – Spinning frisbee
• Passive drag elements (arrows and planes)
• Boiling food
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Feedback Control

• Thermostat
• Cruise control
• Autofocus
• Computer fan speed
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Concepts of Feedback Control

• State-space control
• PID Control
• Other Control Concepts

• Adaptive Control
• Model Predictive Control
• Distributed Control
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State Space Control
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State Space Control

• Canonical State Space Form (Assume full Observability)
• 𝑥𝑘+1  = 𝐴𝑥𝑘 + 𝐵𝑢k

• 𝑦𝑘+1 = 𝑥𝑘+1

• With no input system dynamics are governed by 𝐴 for all time
• 𝑥𝑘+1  = 𝐴𝑥𝑘

• Stability analysis
• Eigan values of 𝐴 are given by det 𝜆𝐼 − 𝐴 = 0

• Unstable if 𝜆𝑖 > 1 for all 𝜆𝑖

• Marginally Stable if at least one 𝜆𝑖 = 1 and all other 𝜆𝑖 ≤ 1 
• Stable if all 𝜆𝑖 < 1 
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State Space Control

• 𝑥𝑘+1  = 𝐴𝑥𝑘

• Stability analysis
• 𝜆𝑖 > 1 for all 𝜆𝑖

• At least one 𝜆𝑖 = 1, all other 
𝜆𝑖 ≤ 1 

• 𝜆𝑖 < 1 

• If stable, system will converge to 
dominate eigen value
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Can We Change the Eigan Values?

• The system dynamics can’t change without altering the system.
• Create a control law

• 𝑥𝑘+1  = 𝐴𝑥𝑘 + 𝐵𝑢k

• 𝑢k = −𝐾𝑥𝑘

• 𝑥𝑘+1  = 𝐴𝑥𝑘 − 𝐵𝐾𝑥k = (𝐴 − 𝐵𝐾)𝑥k

• Now system dynamics are governed by 𝐴 − 𝐵𝐾 and its eigen values
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Control in State Space Methods

• Pole Placement
• Choosing 𝐾 such that the system has the exact dynamics you want

• Linear Quadratic Regulator 
• Choses 𝐾 to minimize a loss function
• 𝐽 = 0

∞
𝑥 𝑡 𝑇 𝑄𝑥 𝑡 + 𝑢 𝑡 𝑇𝑅𝑢 𝑡 𝑑𝑡

• 𝑄 – penalizes deviation in the state
• 𝑅 – penalizes control effort
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State Space Control

• Advantages
• Tools for fine tuning exact system performance exist
• Simple, predicable output
• Works for multidimensional control

• Disadvantages
• Requires exact knowledge of system
• Errors in system dynamics could result in unstable outputs
• Susceptible to noise
• Not robust
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Model Predative Control
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LQR State Space Control

• Linear Quadratic Regulator 
• Choses 𝐾 to minimize a loss function
• 𝐽 = 0

∞
𝑥 𝑡 𝑇 𝑄𝑥 𝑡 + 𝑢 𝑡 𝑇𝑅𝑢 𝑡 𝑑𝑡

• 𝑄 – penalizes deviation in the state
• 𝑅 – penalizes control effort

• Time horizon is infinite
• Once 𝐾 is calculated, it is applied for all time
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Discrete Finite Time Horizon

• 𝑥[𝑘 + 1] = 𝑓(𝑥 𝑘 , 𝑢 𝑘 )

• Look at a finite amount of time into the future

• 𝑢∗ = 𝑎𝑟𝑔 min
𝑢[0…𝑁−1]

σ𝑖=0
𝑁−1(𝑥 𝑖 − 𝑥𝑟𝑒𝑓 𝑖 )𝑇𝑄(𝑥 𝑖 − 𝑥𝑟𝑒𝑓 𝑖 ) + 𝑢 𝑖 𝑇𝑅𝑢[𝑖])

• 𝑢∗ = 𝑎𝑟𝑔 min
𝑢[0…𝑁−1]

σ𝑖=0
𝑁−1 𝑥 𝑖 𝑒𝑟𝑟𝑜𝑟

𝑇 𝑄𝑥𝑒𝑟𝑟𝑜𝑟 + 𝑢 𝑖 𝑇𝑅𝑢[𝑖])
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Choosing 𝑄 & 𝑅

• 𝑄 =

𝑞1 0 ⋯ 0
0 𝑞2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑛

• 𝑅 =

𝑟1 0 ⋯ 0
0 𝑟2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑟𝑛
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Choosing 𝑄 & 𝑅

• Usually, 𝑄 & 𝑅 are diagonal because state variables are independent
• When to use non-diagonal matrices

• Coupled state variables
• Coupled control variables

• Example of coupled state variables
• Angular speed and linear speed

• 𝑥 =

𝑥
𝑦
𝜃
𝑣

ሶ𝜃

, 𝑄 =

𝑞𝑥 0 0 0 0
0 𝑞𝑦 0 0 0

0 0 𝑞𝜃 𝑞𝑣𝜃 0
0 0 𝑞𝑣𝜃 𝑞𝑣 𝑞𝑣 ሶ𝜃

0 0 0 𝑞𝑣 ሶ𝜃 𝑞 ሶ𝜃
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Model Predictive Control

• Advantages
• Handles multi-input, multi-output systems
• Handles non-linear systems
• Receding horizon approach and accurate system prediction

• Disadvantages
• Very computationally expensive
• Errors in system dynamics could result in unstable outputs
• Tuning complexity
• Implementation complexity
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Model Predictive Control
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PID Control
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Proportional Control

• Calculate error
• 𝑒(𝑡) = 𝑥𝑟𝑒𝑓(𝑡) − 𝑥(𝑡)

• Calculate control value
• 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡)

• What happens when there is a force resisting the system?

• Proportional control will always have steady state error

23



Cornell University System Engineering

Proportional-Integral Control

• Calculate error
• 𝑒(𝑡) = 𝑥𝑟𝑒𝑓(𝑡) − 𝑥(𝑡)

• Calculate control value
• 𝑢 𝑡 = 𝐾𝑃𝑒 𝑡 + KI 0

𝑡
𝑒 𝜏 𝑑𝜏

• Removes steady state error!

• Introduces overshoot.
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Proportional-Integral-Derivative Control

• Calculate error
• 𝑒(𝑡) = 𝑥𝑟𝑒𝑓(𝑡) − 𝑥(𝑡)

• Calculate control value
• 𝑢 𝑡 = 𝐾𝑃𝑒 𝑡 + KI 0

𝑡
𝑒 𝜏 𝑑𝜏 + KD

𝑑

𝑑𝑡
𝑒(𝑡)

• Can reduce overshoot

• Can produce instability
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PID Control in Discrete Time

• 𝑢[𝑘] = 𝐾𝑃 + 𝐾𝐼 σ𝑖=0
𝑘 𝑒[ i]Ts + KD

𝑒 𝑘 −𝑒[𝑘−1]

𝑇𝑠
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Characterizing a PID Controller

• Rise Time
• Settling Time
• Overshoot
• Steady State Error
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PID Parameters

• 𝐾𝑃

• Faster response, more reactive
• Overshoot and oscillation

• 𝐾𝐼

• Eliminates steady-state error
• Sluggish, integrator windup

• 𝐾𝐷

• Reduces overshoot, adds dampening
• Sensitive to noise
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Potential Problems with PID

• Constant steady-state error
• Integrator windup

• Derivative Kick
• High frequency noise
• Step change in reference signal

• Output Clamping
• Calculate 𝑢(𝑡) is greater than 

actuator can generate
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Derivative Kick

•
𝑑𝑒

𝑑𝑡
=

𝑑

𝑑𝑡
𝑥𝑟𝑒𝑓 𝑡 − 𝑥(𝑡)

•
𝑑𝑒

𝑑𝑡
=

𝑑𝑥𝑟𝑒𝑓 𝑡

𝑑𝑡
−

𝑑𝑥(𝑡)

𝑑𝑡

•
𝑑𝑥𝑟𝑒𝑓 𝑡

𝑑𝑡
 will spike if there is a change in reference signal

•
𝑑𝑒

𝑑𝑡
= −

𝑑𝑥(𝑡)

𝑑𝑡
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Manually Tuning PID Controllers

• Start with 𝐾𝐼 = 0 and 𝐾𝐷 = 0 
• Increase 𝐾𝑃 until system begins to oscillate 
• Add 𝐾𝐷  to reduce overshoot and dampen oscillations
• Add 𝐾𝐼  to eliminate steady-state error
• Repeat
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Ziegler-Nichols Method

• Set 𝐾𝐼 = 0 and 𝐾𝐷 = 0

• Increase 𝐾𝑃 until system starts to oscillate
• This gain is 𝐾𝑤 and period of oscillation is 𝑇𝑤

32

Controller 𝐾𝑃 𝐾𝐼 𝐾𝐷

P 0.5𝐾𝑤 - -

PI 0.45𝐾𝑤 1.2𝐾𝑃/𝑇𝑤 -

PID 0.6𝐾𝑤 2𝐾𝑃/𝑇𝑤  𝐾𝑝𝑇𝑤/8
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PID Control

• Advantages
• Simple – doesn’t require detailed system modeling or design
• Computationally efficient
• Effective for many single input-single output systems

• Disadvantages
• Limited in multi-variable systems
• Poor predictive capability
• Sensitive to tuning and nonlinearities
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Adaptive Control
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Adaptive Control

• Challenges in implementing feedback control systems
• Unknown system dynamics
• Changing system dynamics

• Examples
• Vehicles carry different payloads 
• Electrical grid demand changes from season to season
• User of a system might change
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Adaptive Control

• 𝑥𝑘+1  = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢k

• Adaptive control
• As you control your system, save the last N data point
• Perform linear regression to estimate 𝐴𝑘  and 𝐵𝑘  
• Use 𝐴𝑘  and 𝐵𝑘  to calculate new control law
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Adaptive control

• Self Tuning Regulator
• Estimates 𝐴𝑘  and 𝐵𝑘  in real time
• Recalculates control law (pole-place, MPC, PID) based on new 𝐴𝑘  and 𝐵𝑘

• Gain Scheduling (Quasi-Adaptive)
• Precomputes different laws (pole-place, MPC, PID)
• Switches or interpolates between them based on estimated 𝐴𝑘  and 𝐵𝑘
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Adaptive Control
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Adaptive Control
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